

phyCORE-i.MX8X

Technical documentation and resources for the phyCORE-i.MX8X System on Module.

When beginning to consider the phyCORE-i.MX8X SOM as a part of your system design, it can be a little difficult to know where to start. Here is a suggested work flow:

	Work through the Quickstart first to boot the development kit and then head over to Interface Guides to help you exercise the hardware. Depending on your system requirements, this might be all you need to begin scripting and developing the basic functionality of your system directly on the target.

	The Booting Essentials guides will help to boot from other boot sources.

	If you are ready to begin writing custom applications on your target hardware, checkout the Application Development guides to help you get your projects started.

	Once you have identified any limitations with the default phyCORE-i.MX8X development kit and BSP, the next step is to modify the hardware and software to meet your project requirements. Head over to the BSP Development page to begin working on your production image. Once built, you are free to modify it in order to support your custom design (phyCORE-i.MX8X SOM + custom carrier board).

	Since our BSP comes with a limited set of application, 3rd Party Integration describes how to integrate 3rd-Party tools.

This Linux BSP is built using The Yocto Project [https://www.yoctoproject.org/]. Yocto is a powerful toolset that allows OEMs to create production ready software images for custom hardware. The BSP is configured by default to support the phyCORE-i.MX8X development kit and using tools provided by the OpenEmbedded [https://www.openembedded.org/wiki/Main_Page] build system, support for custom hardware built around the phyCORE-i.MX8X SOM can be easily integrated in a modular fashion into PHYTEC’s base BSP.

	Release Notes

	Quickstart

	Interface Guides

	Booting Essentials

	Application Development

	BSP Development

	3rd Party Integration

	Pre-Built Binaries

Release Notes

This document highlights the key features and support included in the BSP-Yocto-FSL-i.MX8X-PD21.1.0 software release for the phyCORE-i.MX8X SOM and development kit.

Board Support Package Status

	BSP Operating system

	Linux

	Release Status

	RELEASED

	Release Date

	02-26-2021

	Repository

	PHYTEC Public Repos [https://stash.phytec.com/projects/PUB]

	Binaries

	BSP-Yocto-FSL-i.MX8X-PD21.1.0 [http://artifactory.phytec.com/artifactory/webapp/#/artifacts/browse/tree/General/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0]

New in this Release

SCFW

	Added support for the phyCORE-i.MX8X development kit on-top of NXP’s v1.5.1 System Controller Firmware (SCFW) source package.

U-Boot

	Added phyCORE-i.MX8X development kit support to the v2020.04 bootloader code base sourced from NXP’s Linux 5.4.24_2.1.0 Release.

	Enabled support for loading and applying Linux overlays.

Linux

	Added phyCORE-i.MX8X SOM and development kit support to the v5.4.24 kernel code base sourced from NXP’s Linux 5.4.24_2.1.0 Release.

	Enable support for building device tree overlays.

	Generated overlays for optional hardware/interfaces:

	LCD-018-070-KAP: phytec-imx8qxp-lcd018.dtso

	VM-011-COL-M12: phytec-imx8qxp-parallel-camera.dtso

	PEB-LVDS-01: phytec-imx8qxp-lvds0-peb-lvds-01.dtso (LVDS0 connector), phytec-imx8qxp-lvds1-peb-lvds-01.dtso (LVDS1 connector)

	UART2: phytec-imx8qxp-uart2.dtso (cannot be used with CAN)

	WIFI: phytec-imx8qxp-wifi.dtso (cannot be used with SD Card interface)

	Bluetooth: phytec-imx8qxp-bt.dtso (cannot be used with UART1)

Yocto

	Added phyCORE-i.MX8X development kit support to the meta-phytec layer.

	Created a layer manifest based on NXP’s Linux 5.4.24_2.1.0 Release for BSP initialization.

	Allow device tree overlays to be copied over into generated images

Software Versioning

The BSP-Yocto-FSL-i.MX8X-PD21.1.0 software release is based off of NXP’s L5.4.24_2.1.0 Linux release and shares much of the same components and features.

Software Versioning

	Linux Kernel

	v5.4.24

	PHYTEC Linux kernel repository [https://stash.phytec.com/projects/PUB/repos/linux-phytec-fsl/browse?at=refs%2Ftags%2FBSP-Yocto-FSL-i.MX8X-PD21.1.0]

	U-Boot Bootloader

	v2020.4

	PHYTEC U-Boot bootloader repository [https://stash.phytec.com/projects/PUB/repos/uboot-phytec/browse?at=refs%2Ftags%2FBSP-Yocto-FSL-i.MX8X-PD21.1.0]

	Yocto

	3.0 (Zeus)

	PHYTEC Meta Layer repository [https://stash.phytec.com/projects/PUB/repos/meta-phytec/browse?at=refs%2Ftags%2FBSP-Yocto-FSL-i.MX8X-PD21.1.0]

	SCFW

	1.5.1

	PHYTEC source tarball [http://artifactory.phytec.com/artifactory/webapp/#/artifacts/browse/tree/General/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/scfw-phytec_1.5.1.tar.gz]

	Host OS

	Tested on 64-bit Ubuntu 18.04 LTS

	Ubuntu 18.04 Release [http://releases.ubuntu.com/18.04/]

	Qt

	5.14.99 beta3

	

	OpenCL

	1.2

	

	OpenGL

	ES 3.1

	

	Gstreamer

	1.14.4

	

PHYTEC Meta Layer

This BSP release supports the phyCORE-i.MX8X development kit and will eventually support configuration options for more SOM variants to be used with the development kit carrier board (PCM-942). Here is a summary of the Yocto Machine Configuration support introduced in the PHYTEC Meta Layer for this release:

Yocto MACHINE Summary

	Yocto MACHINE

	Default Target Image

	Linux Distro

	Kit Part Number

	Compatible Modules

	U-Boot defconfig

	Linux defconfig

	Device Tree Files

	imx8x-phycore-kit

(Default Kit)

	imx-image-multimedia

	KPCM-065-L.A0

	SOM: PCM-065

Carrier Board: PCM-942

	pcm065_defconfig

	imx8x_phycore_kit_defconfig

	phytec-imx8qxp-phycore-rdk-emmc.dtb

phytec-imx8qxp-bt.dtbo

phytec-imx8qxp-lcd-018.dtbo

phytec-imx8qxp-lvds0-peb-lvds-01.dtbo

phytec-imx8qxp-lvds1-peb-lvds-01.dtbo

phytec-imx8qxp-parallel-camera.dtbo

phytec-imx8qxp-uart2.dtbo

phytec-imx8qxp-wifi.dtbo

	

Part Number Summary

Hardware Summary

	Hardware Description

	Part Number

	Configuration Details (LPDDR4 / eMMC / NOR / Ethernet PHY / Security Chip / Temperature)

	PCB Version

	phyCORE-i.MX8X SOM

	PCM-065-QP28NESI2.A0

	2GB / 8GB eMMC / OSPI / Yes / Yes / Industrial

	1488.2

	phyCORE-i.MX8X Carrier Board

	PCM-942.A2

	
	1491.1

	PCM-065-QP28NESI2.A0 + PCM-942.A2

(Defualt Kit)

	KPCM-065-L.A0

	
	

Linux Device Tree Summary

This is a summary of how the device tree source files (.dts) and the various include files (.dtsi) are broken down in the kernel. These files describe the hardware in a hierarchical and modular way to the kernel, connecting device drivers to the interfaces brought out by the carrier board.

Linux Device Tree Summary

	Hardware Target

	Device Tree File Descriptions

	Filename

	KPCM-065-L.A0

(Default Kit)

	Default Device Tree (includes the SOM .dtsi file below)

	phytec-imx8qxp-phycore-rdk-emmc.dts

	
	SOM .dtsi- This file adds support for your specific SOM’s population options.

	phytec-imx8qxp-phycore-som.dtsi

	
	Carrier Board .dtsi - This file adds general support for the hardware interfaces featured on the development kit carrier board.

	phytec-imx8qxp-pcm-942.dtsi

	
	LCD-018-070-KAP Module overlay

	phytec-imx8qxp-lcd-018.dtso

If designing your own custom carrier board around the phyCORE-i.MX8X SOM, you will eventually define a custom device tree for your board that includes the .dtsi file for the SOM, which PHYTEC has provided for you. All the BSP changes custom for your application should eventually be consolidated its own Meta Layer.

Supported Interfaces

The following table outlines the supported interfaces of the default phyCORE-i.MX8X development kit.

The development kit carrier board features a lot of hardware multiplexing to allow users to evaluate as much of the capabilities of the phyCORE-i.MX8X SOM as possible, even when interfaces conflict. Therefore, not all interfaces will be compatible with each other in the development kit implementation and some interfaces will have caveats for use.

Supported Interfaces

	Interface

	Detail

	Implemented

	Tested

	Status in Device tree

	Notes

	UART

	lpuart0 (UART0)

	Yes

	Yes

	Okay

	Default serial console

Connected to FTDI header or UART header depending on switch (S5)

	
	lpuart1 (UART1)

	Yes

	Yes

	Okay

	Connected to WIFI/BT IC or RS232 header depending on switch (S7)

	
	lpuart2 (UART2)

	Yes

	Yes

	Disable (1)

	Connected to UART header

Shares signals with CAN; disabled by default

	
	M40_UART0

	No

	No

	Disable

	Connected to FTDI or UART headers depending on switch (S5)

M40_UART signals currently muxed in SCFW to SCU M4 core rather than User M4 core

	I2C

	i2c1

	Yes

	Yes

	Okay

	Used by:

GPIO expander

PCM-942 EEPROM

RTC

USB C PD controller

Audio codec

	
	i2c0_mipi_lvds0

(MIPI_DSI0_I2C0)

	Yes

	Yes

	Okay (3)

	

	
	i2c0_mipi_lvds1

(MIPI_DSI1_I2C0)

	Yes

	Yes

	Okay (3)

	

	
	i2c0_parallel

(CAM0_I2C)

	Yes

	Yes

	Disabled (1)

	

	Ethernet

	fec1 (ENET0_RGMII on SOM)

	Yes

	Yes

	Okay

	DP83867IRRGZ SOM PHY

	
	fec2 (ENET1_RGMII on Carrier Board)

	Yes

	Yes

	Okay

	DP83867IRRGZ CB PHY

	Display and Touch

	Analog Touch Control 1

	Yes

	Yes

	Okay (3)

	Capacitive: ETM-FT5x06 (on LCD-018)

	
	Analog Touch Control 2

	Yes

	Yes

	Okay (3)

	Capacitive: ETM-FT5x06 (on LCD-018)

	
	PWM Backlight 1

	Yes

	Yes

	Okay (3)

	pwm_mipi_lvds0 (MIPI_DSI0_GPIO0 on CB)

	
	PWM Backlight 2

	Yes

	Yes

	Okay (3)

	pwm_mipi_lvds1 (MIPI_DSI0_GPIO1 on CB)

	
	LDB1 (LVDS0)

	Yes

	Yes

	Okay (3)

	LVDS Connector X49

	
	LDB2 (LVDS1)

	Yes

	Yes

	Okay (3)

	LVDS Connector X48

	eMMC/SD/SDIO

	mmc0

	Yes

	Yes

	Okay

	eMMC on SOM

	
	mmc1

	Yes

	Yes

	Okay

	SD or WIFI/BT depending on Switch S8

	USB

	usbotg1 (USB_OTG1 on Carrier Board)

	Yes

	Yes

	Okay

	Connects to USB Type-A and USB Micro OTG (X52) connectors

	
	usbotg3 (USB_OTG2 on Carrier Board)

	Yes

	Yes

	Okay

	Connects to USB 3.0 Type-C (Host only)

	CAN

	flexcan2 (flexCAN1 on Carrier Board)

	Yes

	Yes

	Okay (2)

	Connects to X100 10 pin header

	SPI

	lpspi2

	Yes

	Yes

	Okay

	Signals brought out to LVDS connectors

	
	lpspi3

	Yes

	Yes

	Okay

	Signals brought out to X94 expansion header

	OSPI

	flexspi0 (QSPI0A, QSPI0B on SOM)

	Yes

	Yes

	Okay

	NOR Serial Flash on SOM

	GPIO

	User LED

	Yes

	Yes

	Okay

	

	Memory

	Carrier Board EEPROM

	Yes

	Yes

	Okay

	M24C32 on I2C1

	
	SOM EEPROM

	Yes

	Yes

	Okay

	M24C32 on MIPI_CSI0_I2C0

	
	OSPI NOR Flash

	Yes

	Yes

	Okay

	MT35XU512ABA connected to both QSPI0A and QSPI0B sets of signals

	
	eMMC

	Yes

	Yes

	Okay

	mmc0 on SOM

	RTC

	Internal i.MX8X

	Yes

	Yes

	Okay

	Internal to processor

	
	External RTC

	Yes

	Yes

	Okay

	RV-3028-C7 on I2C1

	Communication

	WIFI

	Yes

	Yes

	Disabled (1)

	Sterling-LWB Module on CB

Uses USDHC1 signals (when S8 switched from SD to WIFI)

	Parallel Camera

	Parallel CSI

	Yes

	Yes

	Disabled (1)

	VM-011 at Connector X33 (phyCAM-P connector)

	
	i2c0_parallel (CAM0_I2C)

	Yes

	Yes

	Disabled (1)

	I2C used by parallel camera

	PCIe

	PCIE0

	Yes

	Yes

	Okay

	PCIe x1 at the X81 connector

[1] This interface can be enabled using a device tree overlay

[2] CAN is disabled in the UART2 overlay since they share the same signals

[3] phytec-imx8qxp-lcd-018.dtbo loaded by default

Note

For further support please visit PHYTEC’s Support Portal [http://support.phytec.com/].

Quickstart

If you have just purchased a phyCORE-i.MX8X development kit, start your development here.

[image: phyCORE-i.MX8X Development Kit]

Basic Evaluation Requirements

This Quickstart guide walks through booting the phyCORE-i.MX8X development kit into Linux and how to establish a console session with it using a Windows Host Machine. Host system requirements are minimal for basic serial communication, and for the purposes of this Quickstart, any modern computer could be used. PHYTEC recommends using a native Windows environment to establish serial communication with the development kit and leaving the bulk of development tasks for a dedicated Ubuntu 18.04 build server or Virtual Machine.

Tip

Host system requirements for the more process-intense development tasks are detailed in the BSP Development guide, but you won’t need those Host system requirements to follow this Quickstart or to follow the Interface Guides.

Check the Board Configuration

The board should have been pre-configured during manufacturing, but we will double check it together as an exercise:

	Press firmly down on the SOM with equal pressure on both sides to ensure that it is seated properly

	Ensure that an SD Card is inserted into the SD card slot. This SD card was flashed during manufacturing and should feature the latest phyCORE-i.MX8X Linux image.

	Check that the configuration switches (S2, S5) are set to ON. These ensure that both the SD Card slot (X50) and the primary debug port (X51) are enabled.

	Check that the boot switch (S10) is set to boot the system from SD card.

SD Boot Settings

[image: SD Boot Switch]
[image: phyCORE-i.MX8X boot switch S10]

Serial Communication Setup

	Connect the provided micro-USB serial cable to the debug connector (X51) on the development kit and the other end to a USB port on your Host Machine.

[image: Serial Connection]
Windows 10 Instructions

Tip

If your native operating system is something other than Windows 10, please feel free to reach out on PHYTEC’s Support Portal for more options and instructions.

After the phyCORE-i.MX8X development kit is connected to your windows host machine, you will need to determine the COM ports associated with it.

	Open your system’s Device Manager and expand Ports (COM & LPT).

[image: Windows Device Manager]

	Note the COM port number of the 1st “USB Serial Port” device, there should be two that appear.

Configure your Terminal Session:

	Download or open the terminal emulator of your preference. There are many options such as PuTTY and TeraTerm.

Tip

This guide will use TeraTerm. Configuration of your terminal will vary slightly depending on the terminal emulator software you are using.

	Create a new session using your preferred terminal emulator and specify the COM port to connect to (found in previous steps):

[image: Open a New Terminal Session]

Tip

The COM port will most likely be the second of the two COM ports but you may want to setup a terminal for both the first time.

	Other parameters include: 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control.

[image: Setup Serial Port]
[image: Terminal Settings]

	Once you have an empty terminal session, your host system is effectively listening for console data over the COM port you selected. The documentation for the phyCORE-i.MX8X, outlined throughout this wiki, will generally refer to this serial session as the “Target Console”.

Power the Board

	Use the included power supply (12V/2A) to provide power to the phyCORE-i.MX8X development kit’s X64 power connector. The system will automatically boot.

[image: Terminal Output Linux]

	On your serial console you should reach a login prompt.

Expected Output

imx8x-phycore-kit login:

	Login using “root” (no password is required).

Tip

You may find that commands and text in the terminal wrap over themselves if they extend too far on a single line in your Terminal Window. To improve usability and to prevent text from wrapping over itself use the following command:

Target (Linux)

shopt -s checkwinsize && resize

Safe Shutdown

Before removing power from the development kit, you must make sure that the operating system has safely shutdown. This will help to avoid things like filesystem corruption which can prevent the hardware from booting the next time it is needed.

	To initiate a shutdown run the following command:

Target (Linux)

 poweroff

	Once you have seen “Reached target shutdown” it is safe to remove power from the development kit.

Expected Output

Reached target Shutdown

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

Interface Guides

These interface guides provide steps for evaluating the peripheral interfaces supported by the phyCORE-i.MX8X development kit directly in Linux userspace. If an interface isn’t mentioned here but you expect the i.MX8X Soc to support it, it may be that the interface is supported by the SOM but not on the development kit.

	ADC

	Audio

	Bluetooth

	CAN

	Configuration Switches

	Display (LVDS)

	EEPROM

	eMMC

	Ethernet

	Fan

	GPIO

	HDMI

	I2C

	JTAG

	OSPI NOR Flash

	Parallel Camera

	PCIe

	Power LEDS

	Power and Reset Buttons

	RTC

	SD Card

	SPI

	Thermal Zone

	UART

	USB

	WiFi

ADC

The ADC interface is heavily utilized on the development kit and does not provide access to any of the channels for evaluation. Use of the ADC interface channels will require a custom carrier board for use with the phyCORE-i.MX8X SOM.

Note

VREF for ADC channels is 1.8V

ADC

	ADC Channel

	Interface

	Part-Pin

	Description

	X_ADC_IN0

	LVDS0

	X49 - B40

	Used for the PHYTEC Display Interface 0

	X_ADC_IN1

	LVDS1

	X48 - B40

	Used for the PHYTEC Display Interface 1

	X_ADC_IN2

	10/100/1000 Ethernet

	U56 - 44

	Used as an interrupt/power down signal for the Ethernet interface

	X_ADC_IN3

	Current Monitor

	U85 - 2

	Used to monitor the output current of the SOM Supply

	X_ADC_IN4

	10/100/1000 Ethernet

	U56 - 39

	Used as a GPIO for LCD power control (1v8)

	X_ADC_IN5

	10/100/1000 Ethernet

	U56 - 40

	Used as a GPIO for LCD touch interrupt (1v8)

Audio

This guide will show you how to connect and use a headset/microphone in order to exercise some of the available audio interfaces supported on the development kit.

[image: Audio]
[image: Audio Profile]

Requirements

	Ethernet Cable (Included in development kit)

	Headphone/Microphone device with a standard 2.5mm Audio Jack connection (individual or combo)

Playing Audio

	For this example, you’ll need the phyCORE-i.MX8X development kit connected to the internet. Checkout the Ethernet guide first!

	Next, plug your headphones into the “Headphone (Default)” port (the black headphone jack).

	Use the “wget” command to download a sample .wav file from the music science web server at the University of Helsinki directly to the development kit.

Target (Linux)

wget http://www.music.helsinki.fi/tmt/opetus/uusmedia/esim/a2002011001-e02.wav

Expected Output

a2002011001-e02.wav 100% |********************************| 9356k 0:00:00 ETA
'a2002011001-e02.wav' saved

	Use the “aplay” command to play the audio

Target (Linux)

aplay a2002011001-e02.wav

Expected Output

Playing WAVE 'a2002011001-e02.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

Capturing Sound

	Connect the microphone into the Pink jack.

	Use the “arecord” command to capture audio at this interface. The command below will record sound for 10 seconds and save it to the file testrecord.wav.

Target (Linux)

arecord -d 10 -f cd -t wav testrecord.wav

Expected Output

Recording WAVE 'testrecord.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

	Use the following to playback the file you just recorded:

Target (Linux)

aplay testrecord.wav

Expected Output

Playing WAVE 'testrecord.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

Adjusting Playback and Capture Settings

The alsamixer program can be used to configure sound devices and do things such as change volume or mute particular interfaces.

Tip

More information about alsamixer can be found here: https://linux.die.net/man/1/alsamixer

	Launch alsamixer in the target console:

Target (Linux)

alsamixer

A GUI interface will pop up which can be navigated using arrow keys and the hotkeys.

[image: Alsamixer Settings GUI]

Bluetooth

This guide will show you how to connect to the phyCORE-i.MX8X development kit using the on-board Sterling-LWB WiFi/Bluetooth module [https://www.lairdconnect.com/wireless-modules/wifi-modules-bluetooth/sterling-lwb-24-ghz-wifi-4-bt-51-module].

Note

The Wifi/BT module can not be used at the same time as the SD card reader so the user must boot from eMMC.

Please refer to our eMMC guide for more information.

[image: Bluetooth Callout]

Requirements

	Bluetooth capable device to test with

Setting Up Hardware

	With the development kit powered off make sure the necessary switches are configured correctly.

	Set S10 to the eMMC boot configuration. Refer to the Boot Switches configuration page for more information.

[image: ../_images/pcm-065_emmc_boot-switches.png]

	Set S7 to the ON position.

	Power on the board and stop in U-Boot.

	Make sure your environment variables are set correctly and boot into Linux.

Target (U-Boot)

setenv mmcdev 0
setenv mmcroot "/dev/mmcblk0p2 rootwait rw"
setenv overlay_files phytec-imx8qxp-bt.dtbo
boot

Connecting A Bluetooth Device

	After logging into Linux, run the brcm_patchram_plus utility which may take a second or two. This utility patches the firmware to the radio.

Target (Linux)

brcm_patchram_plus --patchram /lib/firmware/brcm/BCM43430A1.hcd --enable_hci --no2bytes --tosleep 1000 /dev/ttyLP1 &

Expected Output

[38.357433] Bluetooth: HCI UART driver ver 2.3
[38.362003] Bluetooth: HCI UART protocol H4 registered
[38.367189] Bluetooth: HCI UART protocol BCSP registered
[38.372729] Bluetooth: HCI UART protocol LL registered
[38.377926] Bluetooth: HCI UART protocol ATH3K registered
[38.384044] Bluetooth: HCI UART protocol Broadcom registered
[38.389865] Bluetooth: HCI UART protocol QCA registered
Done setting line discpline

	Check that the bluetooth module was properly configured using the “hciconfig” command.

Target (Linux)

hciconfig

Expected Output

hci0: Type: Primary Bus: UART
 BD Address: 00:25:CA:35:52:0C ACL MTU: 1021:8 SCO MTU: 64:1
 DOWN
 RX bytes:675 acl:0 sco:0 events:35 errors:0
 TX bytes:427 acl:0 sco:0 commands:35 errors:0

	Bring the Bluetooth interface up.

Target (Linux)

rfkill unblock bluetooth
hciconfig hci0 up

	Run “hcitool lescan” in Linux to scan for your external device.

Target (Linux)

 hcitool lescan

Expected Output

LE Scan ...
18:EE:69:04:69:72 (unknown)
0B:E4:8A:B0:80:78 (unknown)
11:4F:37:EB:2A:6C (unknown)
5A:B0:B7:F2:5B:27 (unknown)
31:BC:21:21:9C:5F Raycon E55 Earbuds
31:BC:21:21:9C:5F (unknown)
64:E7:A7:29:11:AA (unknown)
66:2C:40:EC:77:C9 (unknown)
7F:3B:C9:53:54:E4 (unknown)
7F:3B:C9:53:54:E4 (unknown)
41:CC:AD:C6:0F:C2 (unknown)
57:80:3F:07:D6:B7 (unknown)
64:E7:A7:29:11:AA (unknown)
2A:B2:24:F3:FB:EB (unknown)
18:EE:69:04:69:72 (unknown)

CAN

This guide will show you how to connect and test CAN on the phyCORE-i.MX8X development kit. The development kit provides a single CAN interface (CAN1) located at connector X100.

[image: CAN]

Note

UART2 (X99) and CAN1 (X100) cannot be used at the same time.

Requirements

	DB9 Male 2x5 to RS232 Female Cable (Included in development kit)

	PCAN-USB Adapter [https://phytools.com/collections/usb-interfaces/products/pcan-usb-adapter]

	CAN Cable [https://phytools.com/products/pcan-cable-2-w-120-ohm-termination]

	PCAN-View Software [https://phytools.com/products/pcan-view-free-can-software]

Setting Up Hardware

	Make sure the development kit is powered off.

	Make sure the configuration switch (S6) is set to the OFF position.

[image: ../_images/pcm-065_S6-callout.png]

	Connect the DB9 to 2X5 connector cable to the connector X100 on the development kit and one end of the CAN cable.

	Connect the other end of the CAN cable to the PCAN-USB Adapter and the USB side of the adapter to your host PC.

Note

If you cannot find your device in the listed hardware, ensure that you have the correct driver installed on your host PC. You can obtain the driver here [https://www.peak-system.com/quick/DrvSetup].

Setting Up Host PC with PCAN-View

	Download PCAN-View from the link above.

	Extract the files to a desired location and run the executable. Windows may decide the file is a risk but clicking “More info” will allow you to run the program.

[image: ../_images/pcm-065_can-pcan-setup.png]
[image: ../_images/pcm-065_can-pcan-setup2.png]

	Once PCAN-View is open you should see your device in the list of available hardware. Set the “Bit rate:” field to 1MBit/s and click OK.

[image: ../_images/pcm-065_can-pcan-setup3.png]

Setting the Bitrate

	Double check the CAN cable connections, switch S6, and that PCAN-View detects your PCAN-USB device.

	Power on the kit to get into the Linux console.

	Configure the CAN interface with the same bit rate (1MBit/s) as the PCAN-View software.

Target (Linux)

ip link set can0 down
ip link set can0 up type can bitrate 1000000
ip link set can0 up

Sending CAN Messages

	Use the “cansend” command to send data over the CAN bus.

Target (Linux)

cansend can0 000#DE.AD.BE.EF.CA.FE.BA.BE

	Verify that the data appears correctly in the “Receive” window of the PCAN-View software.

[image: ../_images/pcm-065_can-send.png]

Receiving CAN Messages

	Set up the test message in PCAN-View by going to the “Transmit” tab and selecting “New Message”.

	Enter in “DEADBEEFCAFEBABE” as the hex data and then click OK.

[image: ../_images/pcm-065_can-receive.png]

	Use the “candump” command to allow the development kit to listen for incoming data from the CAN bus.

Target (Linux)

candump can0

	Select the message in the PCAN-View software and press space-bar to send the message.

	The message should print to the development kit console.

Expected Output

root@imx8qxpmek:~# candump can0
can0 000 [8] DE AD BE ED CA FE BA BE

	Press Ctrl + C to stop the candump command.

Configuration Switches

The development kit provides reference circuits for the interfaces available at the SOM connectors. Several IO share pins due to multiplexing and may not be available at the same time. It is likely that you will want to use a signal in a different way than we have chosen on the dev kit. For that reason we added five configuration DIP switches to route interfaces from the SOM to different peripheral connectors. This guide describes how to change and check what interfaces are enabled.

Configuration switches and status LEDs can be found on the carrier board:

[image: ../_images/pcm-065_configswitch.png]
The interfaces on the Carrier Board impacted by these switches include:

	CAN

	NAND

	SD Card slot

	UART (UART0, M40_UART0, UART1, UART2)

	WiFi

Location and behavior of the Configuration DIP switches is stated below. Switch state should only be modified when no power is applied to the board.

[image: ../_images/pcm-065_configswitch-close-up.png]

Configuration Switch Settings

	Configuration Switch

	Description

	ON

	OFF

	Notes

	S2

	SD interface

	SD enabled

	NAND Flash

	Enables connection of USDHC1 off the SOM. NAND flash is not populated by default on the SOM.

	S5

	Serial Console Type

	FTDI enabled (X51)

	FTDI disabled

	UART0 and M40_UART0 routing to either microUSB or pin header (X59).

	S6

	UART2

	UART2 enabled (X59 header)

	CAN enabled (X100 header)

	CAN1 interface

	S7

	Bluetooth

	Bluetooth enabled

	RS-232 enabled (X99)

	UART1 interface for bluetooth or RS-232 interface.

	S8

	WiFi

	WiFi enabled

	SD card enabled (X50)

	SDIO interface is shared between WiFi and the SD card slot

Display (LVDS)

This guide will show you how to use the LCD Touch Displays connected to LVDS0 and LVDS1 on the phyCORE-i.MX8X development kit carrier board.

[image: LVDS Display]

Requirements

	Capacitive Touch Display - LCD-018-070-KAP

Setting Up Hardware

	With i.MX8X development kit powered off and with the power supply removed, connect the one or both of the displays to X49 (LVDS0) or X48 (LVDS1).

Note

The display ribbon cables will point towards the center of the development kit so that the display and the kit are both right side up together.

[image: ../_images/pcm-065_display-callouts.png]

Using the Display

	Power on the development kit and stop in U-Boot.

	Load the device tree overlay needed for operating the LCD-018 display, save the environment, and boot into Linux.

Target (U-Boot)

setenv overlay_files phytec-imx8qxp-lcd-018.dtbo
saveenv
boot

	During the boot process you should see Tux the Penguin appear on the screen before being presented with a simple GUI demo application.

Gstreamer Pipelines

	Gstreamer can be leveraged to place images onto the display:

Target (Linux)

gst-launch-1.0 -v videotestsrc ! autovideosink

Disabling the Display

	Reboot or power on the development kit and stop U-Boot.

	Set the overlay_files variable to an empty state, save the environment, and boot into Linux.

Target (U-Boot)

setenv overlay_files
saveenv
boot

EEPROM

This guide will show you how to access the 4kB EEPROM featured on the phyCORE-i.MX8X development kit carrier board.

Warning

The phyCORE-i.MX8X development kit provides access to three 4kB EEPROMs with two populated on the SOM and one on the carrier board.

The EEPROM located on the carrier board is connected to the I2C1 interface and has the device address 0x51.

EEPROM

	Location

	Reference

	Address

	Carrier Board

	U81

	0x51

	SOM

	U13

	0x52

	SOM

	U21

	0x56

Verifying EEPROM Initialization

	First ensure that the EEPROM is initialized correctly by checking the boot log. This confirms that kernel successfully registered the EEPROM with 4096 bytes available at address 0x51.

Target (Linux)

dmesg | grep -i "eeprom"

Expected Output

[2.213275] at24 16-0051: 4096 byte 24c32 EEPROM, writable, 32 bytes/write
[2.231601] at24 17-0056: 4096 byte 24c32 EEPROM, writable, 32 bytes/write

Writing to EEPROM

	Clear out the entirety of the EEPROM by writing zeros to it.

Target (Linus)

dd if=/dev/zero of=/sys/bus/i2c/devices/16-0051/eeprom bs=4096 count=1

Expected Output

1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.823113 s, 5.0 kB/s

	Now generate a 4kB file with random data. This will serve as the test file:

Target (Linus)

dd if=/dev/urandom of=/tmp/test1.img bs=4096 count=1

Expected Output

1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.000300138 s, 13.6 MB/s

	Write the test file to the EEPROM

Target (Linus)

dd if=/tmp/test1.img of=/sys/bus/i2c/devices/16-0051/eeprom bs=4096 count=1

Expected Output

1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.824812 s, 5.0 kB/s

Reading from EEPROM

	Read the contents of the EEPROM and store it to a file.

Target (Linus)

dd if=/sys/bus/i2c/devices/16-0051/eeprom of=/tmp/test2.img bs=4096 count=1

Expected Output

1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.376402 s, 10.9 kB/s

	Make sure the output file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum /tmp/test1.img
md5sum /tmp/test2.img

Expected Output

a8bcb487045ce0e02b76901a51876179 /tmp/test1.img
a8bcb487045ce0e02b76901a51876179 /tmp/test2.img

eMMC

This guide will show how to view partition information, read from, and write to the eMMC featured on the phyCORE-i.MX8X SOM.

Note

In order to follow this guide your phyCORE-i.MX8X development kit must be booting from SD Card.

Viewing Available eMMC Partitions

	You can verify the eMMC partitions by using the following command to list the partition information of known MMC devices. The ‘fdisk’ utility is a very powerful tool which you can use to manage the partitions on a particular flash device.

Target (Linux)

fdisk -l

Note

The eMMC corresponds to /dev/mmcblk0 and the SD Card is /dev/mmcblk1 in the output.

Expected Output

Disk /dev/mtdblock0: 64 MiB, 67108864 bytes, 131072 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mmcblk0: 7.1 GiB, 7616856064 bytes, 14876672 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x539985d3

Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 * 16384 186775 170392 83.2M c W95 FAT32 (LBA)
/dev/mmcblk0p2 196608 7480935 7284328 3.5G 83 Linux

Disk /dev/mmcblk1: 14.86 GiB, 15931539456 bytes, 31116288 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x539985d3

Device Boot Start End Sectors Size Id Type
/dev/mmcblk1p1 * 16384 186775 170392 83.2M c W95 FAT32 (LBA)
/dev/mmcblk1p2 196608 7480935 7284328 3.5G 83 Linux
/dev/mmcblk1p3 7481344 31115263 23633920 11.3G b W95 FAT32

Warning

Be careful using the “fdisk” command. If you aren’t careful, it can easily delete a partition of a flash device you didn’t intend to, and this could be your root filesystem!

Mounting the eMMC

	The flash devices are mounted by default and you can verify their mount points with the following command.

Note

The eMMC partitions are mounted as “mmcblk0p1” and “mmcblk0p2” respectively. The SD card partitions are mounted as “mmcblk1p*”.

Target (Linux)

mount | grep mmc

Expected Output

/dev/mmcblk1p2 on / type ext4 (rw,relatime)
/dev/mmcblk0p1 on /run/media/mmcblk0p1 type vfat (rw,relatime,gid=6,fmask=0007,dmask=0007,allow_utime=0020,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)
/dev/mmcblk0p2 on /run/media/mmcblk0p2 type ext4 (rw,relatime)
/dev/mmcblk1p1 on /run/media/mmcblk1p1 type vfat (rw,relatime,gid=6,fmask=0007,dmask=0007,allow_utime=0020,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)
/dev/mmcblk1p3 on /run/media/mmcblk1p3 type vfat (rw,relatime,gid=6,fmask=0007,dmask=0007,allow_utime=0020,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)

	Check the contents of the eMMC’s partition by entering the following.

Target (Linux)

ls /run/media/mmcblk0p2

Expected Output

bin dev home lost+found mnt proc sbin tmp usr
boot etc lib media opt run sys unit_tests var

Write to eMMC

	Create a test file.

Target (Linux)

echo "Hello World" > ~/test.txt

	Now you can use the copy (cp) or move (mv) commands to put this file on the eMMC.

Target (Linux)

cp ~/test.txt /run/media/mmcblk0p2

	Verify that the file was written to the eMMC.

Target (Linux)

ls /run/media/mmcblk0p2

Expected Output

bin dev home lost+found mnt proc sbin test.txt unit_tests var
boot etc lib media opt run sys tmp usr

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum ~/test.txt
md5sum /run/media/mmcblk0p2/test.txt

Expected Output

e59ff97941044f85df5297e1c302d260 /home/root/test.txt
e59ff97941044f85df5297e1c302d260 /run/media/mmcblk0p2/test.txt

Reading from eMMC

	Use the copy (cp) or move (mv) command to put this file back onto your SD card.

Target (Linux)

cp /run/media/mmcblk0p2/test.txt ~/test-READ.txt

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum /run/media/mmcblk0p2/test.txt
md5sum ~/test-READ.txt

Expected Output

 e59ff97941044f85df5297e1c302d260 /run/media/mmcblk0p2/test.txt
 e59ff97941044f85df5297e1c302d260 /home/root/test-READ.txt

Booting from eMMC

To learn more about booting from eMMC, checkout the flashing eMMC guide.

Ethernet

Gigabit Ethernet links are provided via the ETH0 and ETH1 RJ45 connectors on the phyCORE-i.MX8X development kit. This guide shows you how to connect and use these interfaces.

[image: ../_images/pcm-065_eth-callout.png]

Requirements

	CAT5e cable (comes included with the development kit)

	Network switch connected to a DHCP enabled network

[image: ../_images/pcm-065_network.png]

Establishing a Connection

Note

If a valid connection between the phyCORE-i.MX8X development kit and a DHCP enabled network is made before boot-up then the phyCORE-i.MX8X will automatically negotiate a connection and will be assigned a unique IPv4 address.

	Once booted into Linux, you can try the following command to ping a host. We’ll ping google.com in this example:

Target (Linux)

ping google.com -c 10

Expected Output

root@imx8qxpmek:~# ping -c 10 google.com
PING google.com (172.217.14.238) 56(84) bytes of data.
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=1 ttl=53 time=135 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=2 ttl=53 time=11.9 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=3 ttl=53 time=12.2 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=4 ttl=53 time=15.5 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=5 ttl=53 time=12.4 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=6 ttl=53 time=11.9 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=7 ttl=53 time=28.9 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=8 ttl=53 time=69.1 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=9 ttl=53 time=15.6 ms
64 bytes from sea30s02-in-f14.1e100.net (172.217.14.238): icmp_seq=10 ttl=53 time=15.6 ms

--- google.com ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9009ms
rtt min/avg/max/mdev = 11.909/32.853/135.067/37.935 ms

Finding the IPv4 Address

	To view the IP address assigned to your device’s network interfaces, use the following command:

Target (Linux)

ifconfig

Expected Output

root@imx8x-phycore-kit:~# ifconfig
eth0 Link encap:Ethernet HWaddr 86:95:e9:d3:aa:c3
 inet addr:172.22.30.7 Bcast:172.22.30.255 Mask:255.255.255.0
 inet6 addr: fe80::8495:e9ff:fed3:aac3/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:89 errors:0 dropped:16 overruns:0 frame:0
 TX packets:62 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:27554 (26.9 KiB) TX bytes:11921 (11.6 KiB)

eth1 Link encap:Ethernet HWaddr 3a:eb:67:9e:0b:89
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:86 errors:0 dropped:0 overruns:0 frame:0
 TX packets:86 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:7496 (7.3 KiB) TX bytes:7496 (7.3 KiB)

In the above example, we can see that ETH0 was assigned the IPv4 address 172.22.30.7

SSH into Kit

Once the phyCORE-i.MX8X’s IPv4 address is known, we can use it to interact with the development kit over the network. This section of the guide will walk through establishing an SSH connection with the hardware which can be a handy way to quickly get a second terminal session up and running. This might be useful if you are doing development directly on the target and need to process a second task in parallel with something running in the standard hardware UART console. In order to most easily follow this section of the guide, you will want both the phyCORE-i.MX8X and your Ubuntu Host Machine connected to the same local area network (LAN).

	Using your Ubuntu Host Machine, start a new Terminal session and use the following command to ensure that ssh is installed:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install ssh

	The phyCORE-i.MX8X Linux BSP has a ssh server installed and enabled by default so it is already pre-configured to accept ssh connections. Establish a connection with the development kit using the Ubuntu Host Machine:

Host (Ubuntu)

ssh root@XXX.XXX.XXX.XXX

	The first time you SSH into the development kit you will probably be prompted to add the target to a list of known hosts:

Expected Output

user@ubuntu:~$ ssh root@172.22.30.7
The authenticity of host '172.22.30.7 (172.22.30.7)' can't be established.
RSA key fingerprint is SHA256:KUCQauJS5i5gk11HVqU8/qenIr8XeYBaWC7Oks5TKAE.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '172.22.30.5' (RSA) to the list of known hosts.
root@imx8x-phycore-kit:~#

Trouble Establishing an SSH Connection?

	Double check that the development kit is actually connected to the network by pinging a known host such as google.com in the target console.

	Another common thing that trips up people is having a VPN enabled, which can cause your Host Machine to not find the phyCORE-i.MX8X target.

	A final place to troubleshoot network related issues between the phyCORE-i.MX8X and the Ubuntu Host Machine is the network adapter settings, especially if you are using a Virtual Machine to host Ubuntu. In VMWare Workstation, the Virtual Machine’s Network Adapter settings look like the following:

[image: ../_images/pcm-065_eth-shh-issues.png]

The network setting will likely have NAT selected by default and this should work for most development tasks. Switching this to Bridged and replicating a physical connection can sometimes help resolve problems depending on what you are trying to do.

Note

Feel free to reach out at PHYTEC’s Support Portal [https://jira.phytec.com/servicedesk/customer/portals] if you have any questions or concerns.

Fan

The phyCORE-i.MX8X development kit provides fan connectivity via a 2-pin Hirose connector at X74 and a 3-pin connector at X73. The fan is intended to be mounted directly to the processor heat sink for thermal management, both of which are included with the phyCORE-i.MX8X development kit. The X74 connector is connected directly to the VCC_5V rail and the X73 connector is connected directly to the VCC_12V rail.

[image: ../_images/pcm-065_fan-callouts.png]

Requirements

Below is a table that includes some information about the fan and heat sink included with the development kit.

Recommended Fan Assembly

	Item

	Description

	Link

	Heat Sink

	(29mmx29mmx9.5mm)

	Digikey link (heat sink) [https://www.digikey.com/en/products/detail/advanced-thermal-solutions-inc/ATS-55290D-C1-R0/1284984]

	Fan

	DC axial fan, 25mm square x 10mm

	Digikey link (fan) [https://www.digikey.com/en/products/detail/sunon-fans/MF25100V1-1000U-A99/7805269]

	Female Connector

	2xpin keyed header

	Digikey link [https://www.digikey.com/en/products/detail/amphenol-cs-fci/10114826-00002LF/2658910]

	Crimping Terminals

	2x crimping jackets

	Digi link [https://www.digikey.com/en/products/detail/hirose-electric-co-ltd/DF13-2630SCF/566967]

Controlling the Fan

	Enabling/disabling the fan is controlled by the IO_EXP_FAN_CTRL GPIO signal. The following commands can be used to enable/disable the fan.

Target (Linux)

root@imx8x-phycore-kit:~# echo 473 > /sys/class/gpio/export
root@imx8x-phycore-kit:~# echo out > /sys/class/gpio/gpio473/direction
root@imx8x-phycore-kit:~# echo 1 > /sys/class/gpio/gpio473/value
root@imx8x-phycore-kit:~# echo 0 > /sys/class/gpio/gpio473/value

GPIO

This guide will show you how to connect to toggle a GPIO on the phyCORE-i.MX8X development kit.

Tip

The GPIO pin numbering of the phyCORE-i.MX8X schematic is offset from the device name in sysfs.

You can use the following equation to figure out what number the device is represented as in sysfs.

Hardware Signal = GPIO(Bank)_IO(num)

sysfs GPIO Device = (Bank)*32 + num

Example:

Hardware Signal = LSIO_GPIO0_IO19

sysfs GPIO Device = (0)*32 + 19 = 19

LSIO_GPIO0_IO19 is represented as GPIO19 in sysfs

Toggling User LED (D31)

The development kit has a user-configurable LED (D31) that is hooked up to LSIO_GPIO0_IO28 of the processor.

Note

This is named as X_SAI0_TXFS on the SOM schematic and changes to X_USER_LED on the carrier board schematic.

[image: ../_images/pcm-065_gpio-d31.png]

	Now that we know the GPIO bank (0) and number (28) we can calculate which gpio to export in software.

(0x32) + 28 = 28

	Export GPIO28

Target (Linux)

echo 28 > /sys/class/gpio/export

	Set GPIO28 as an output

Target (Linux)

echo out > /sys/class/gpio/gpio28/direction

	Turn ON the User_LED

Target (Linux)

echo 0 > /sys/class/gpio/gpio28/value

GPIO Expander (U90)

The GPIO expander is connected to the I2C1 interface at address 0x20 and provides an additional 8 GPIOs that are used for various interfaces such as ETH, the displays, the cameras, and the fan.

To learn how to access the GPIO expander you can refer to our I2C guide.

HDMI

The PEB-LVDS-01, an LVDS-HDMI adapter, can be used with either the LVDS0 or LVDS1 interfaces of the phyCORE-i.MX8X development kit in order to connect a compatible HDMI display. This guide will walk through the setup and basic evaluation of the LVDS-HDMI adapter.

[image: ../_images/pcm-065_hdmi.png]

Requirements

	PEB-LVDS-01

Note

The max resolution supported by the PEB-LVDS-01 is 1024x768 @ 60 HZ. This limitation is due to a bottle neck introduced by a chip used on the adapter itself, not the phyCORE-i.MX8X which is capable of Full HD at 1080p. A Full HD adapter will be available in the future.

Both LVDS0 and LVDS1 support the PEB-LVDS-01 adapter, we are just going to use the first in this guide.

	Monitor with HDMI port

Hardware Setup

	With the phyCORE-i.MX8X development kit powered off, connect the PEB-LVDS-01 adapter to the LVDS0 interface.

	Connect the PEB-LVDS-01 adapter to a HDMI cable and a HDMI Display. A computer monitor will generally work fine for this.

[image: ../_images/pcm-065_hdmi-hdmi-connection.png]

	Power on the development kit and stop in U-Boot when prompted.

	Enter the following commands in U-Boot:

Target (U-Boot)

setenv overlay_files phytec-imx8qxp-lvds0-peb-lvds-01.dtbo
setenv mmcargs 'setenv bootargs console=${console},${baudrate} earlycon root=${mmcroot} video=card0-HDMI-A-1:1024x768@60'
saveenv
boot

	Upon booting into Linux and after logging in as root, open the weston.ini file using the Vi text editor:

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Target (Linux)

vi /etc/xdg/weston/weston.ini

	Uncomment/add the following lines:

Target (Linux)

[output]
name=HDMI-A-1
mode=1024x768@60

Warning

Make sure you uncomment all 3x lines specified in the above code block. A common mistake that trips up people here is forgetting to uncomment the ‘[output]’ line.

	Save and close the weston.ini file.

	Reboot the phyCORE-i.MX8X development kit:

Target (Linux)

reboot

	Once booted into Linux, you should be able to see the Weston graphics framework on the display. Gstreamer can be used to place images and videos on the display:

Target (Linux)

gst-launch-1.0 -v videotestsrc ! autovideosink

Note

If your HDMI monitor is not showing the Weston Graphics framework as expected, first try power cycling the monitor.

If the display still doesn’t detect a valid signal, it could be that the HDMI monitor you chose doesn’t support the output resolution.
How can you find supported resolutions?

	Using the following command to list the available resolutions:

Target (Linux)

cat /sys/class/drm/card0-HDMI-A-1/modes

	Or use the following list of the available resolutions that the HDMI display is advertising:

1920x1080
1920x1080
1920x1080
1920x1080
1920x1080i
1920x1080i
1920x1080
1920x1080
1280x720
1280x720
1280x720
1024x768
1024x768
1024x768
800x600
800x600
800x600
720x480
720x480
640x480
640x480
640x480
640x480
720x400

Repeat the above steps outlined in this guide using the next available resolution supported by the display and which doesn’t exceed 1024x768.

I2C

This guide will show you how to test the I2C interface on the phyCORE-i.MX8X development kit.

[image: ../_images/pcm-065_i2c-callout.png]

Note

The phyCORE-i.MX8X SOM supports up to 9x I2C interfaces by default.

Only four of these are supported on the phyCORE-i.MX8X carrier board and three of those four are reserved for specific interfaces (2x for the MIPI display 1x for the MIPI camera interfaces).

I2C Paths

	Interface

	Sysfs Path

	CSI0_I2C0

	/dev/i2c-16

	DSI0_I2C0

	/dev/i2c-17

	DSI1_I2C0

	/dev/i2c-18

	I2C1

	/dev/i2c-19

Requirements

	Female to Female Jumper Wires

	I2C device (Accelerometer [https://www.sparkfun.com/products/12589])

Hardware Setup

Connecting the I2C Device

	I2C Device Signal

	Carrier Board Signal

	Carrier Board Connector-Pin

	VCC

	VCC_3V3

	X60 - Pin 1

	SCL

	X_I2C1_SCL

	X59 - Pin 7

	SDA

	X_I2C1_SDA

	X59 - Pin 8

	GND

	GND

	X59 - Pin 9

[image: ../_images/pcm-065_i2c-callout.png]

Warning

Be sure that the development kit is powered off when connecting the I2C device.

Using I2C1

	Power on the development kit and boot into Linux.

	List the available I2C devices. There will be a few devices that pop up but /dev/i2c-19 corresponds to the I2C1 interface.

Target (Linux)

ls /dev/i2c*

Expected Output

/dev/i2c-16 /dev/i2c-17 /dev/i2c-18 /dev/i2c-19

	Use the “i2cdetect” command to scan the bus for devices. This command outputs the address of all devices on the I2C1 bus.

Note

UU indicates that the device connected is tied to a kernel driver and you will be unable to communicate with the device via i2c commands (i2cset and i2cget).

Target (Linux)

i2cdetect -y -r 16

Expected Output

 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: -- -- -- -- -- -- -- UU -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3f
 40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 50: -- UU UU -- -- -- -- -- -- 59 -- -- -- -- -- --
 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

The detected interfaces should match with the devices connected to I2C1 on the development kit.

I2C Interface Addresses

	Interface

	Address (7-bit

	GPIO Expander

	0x20

	USB-C Controller

	0x3F

	EEPROM

	0x51, 0x59

	RTC

	0x52

	Audio

	0x0A

Note

The EEPROM M24C32 has two different addresses (0x51 and 0x59) but one has been reserved in the device tree.

JTAG

This guide will show you how to use the JTAG interface on the phyCORE-i.MX8X development kit.

[image: ../_images/pcm-065_jtag.png]

Requirement

	J-LINK Segger Debugger [https://www.mouser.com/ProductDetail/Segger-Microcontroller/80800?qs=jA5Ki6243on%2Fr15wFqMuRQ%3D%3D&mgh=1&gclid=CjwKCAjwkLCkBhA9EiwAka9QRoFG-HI7NwoorWPwoUYro1ihBW4AiZEcsxXaKkGrkD7MPMSfdLu0qxoCNQAQAvD_BwE]

	Download and Install the J-link software [https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack]

Note

You can find more documentation about the J-link software here: https://wiki.segger.com/J-Link_Commander

Hardware Setup

	Power off the development kit.

	Connect your JTAG Debugger to X58 making sure the red line on the ribbon cable aligns with pin 1 on the header.

[image: ../_images/pcm-065_jtag-connector.png]

	Power on the development kit and boot into Linux

Device Connection Setup

	Open the J-link software and make sure your debugger is recognized.

J-Link Commander Console (Host)

SEGGER J-Link Commander V6.98a (Compiled Mar 5 2021 17:02:18)
DLL version V6.98a, compiled Mar 5 2021 17:01:02

Connecting to J-Link via USB...O.K.
Firmware: J-Link V11 compiled Jul 17 2020 16:24:07
Hardware version: V11.00
S/N: 51009799
License(s): GDB
VTref=0.000V

Type "connect" to establish a target connection, '?' for help
J-Link>

	Initiate the connection sequence.

J-Link Commander Console (Host)

connect
Please specify device / core. <Default>: MK64FN1M0XXX12
Type '?' for selection dialog
Device>MK64FN1M0XXX12
Please specify target interface:
J) JTAG (Default)
S) SWD
T) cJTAG
TIF>J

Expected Output (Host)

Please specify device / core. <Default>: MK64FN1M0XXX12
Type '?' for selection dialog
Device>

	Specify the device you are connecting to (MK64FN1M0XXX12)

J-Link Commander Console (Host)

MK64FN1M0XXX12

Expected Output (Host)

Please specify target interface:
J) JTAG (Default)
S) SWD
T) cJTAG
TIF>

	Choose the target interface

J-Link Commander Console (Host)

J

Expected Output (Host)

Device position in JTAG chain (IRPre,DRPre) <Default>: -1,-1 => Auto-detect
JTAGConf>

	Use the default “Device position” from above by hitting “Enter” to move to the next step.

Expected Output (Host)

Specify target interface speed [kHz]. <Default>: 4000 kHz
Speed>

	Type in a device speed and hit “Enter”.

J-Link Commander Console (Host)

4000

Expected Output (Host)

Device "MK64FN1M0XXX12" selected.

Connecting to target via JTAG
InitTarget()
Timeout while halting CPU.
TotalIRLen = 4, IRPrint = 0x01
JTAG chain detection found 1 devices:
#0 Id: 0x2890201D, IRLen: 04, JTAG-DP
DPv0 detected
Scanning AP map to find all available APs
AP[7]: Stopped AP scan as end of AP map has been reached
AP[0]: AXI-AP (IDR: 0x44770004)
AP[1]: AHB-AP (IDR: 0x24770011)
AP[2]: AHB-AP (IDR: 0x24770011)
AP[3]: AHB-AP (IDR: 0x84770001)
AP[4]: APB-AP (IDR: 0x54770002)
AP[5]: AHB-AP (IDR: 0x84770001)
AP[6]: AHB-AP (IDR: 0x84770001)
Iterating through AP map to find AHB-AP to use
AP[0]: Skipped. Not an AHB-AP
AP[1]: Core found
AP[1]: AHB-AP ROM base: 0xE00FF000
CPUID register: 0x410FC241. Implementer code: 0x41 (ARM)
Found Cortex-M4 r0p1, Little endian.
FPUnit: 6 code (BP) slots and 2 literal slots
CoreSight components:
ROMTbl[0] @ E00FF000
ROMTbl[0][0]: E000E000, CID: B105E00D, PID: 000BB00C SCS-M7
ROMTbl[0][1]: E0001000, CID: B105E00D, PID: 003BB002 DWT
ROMTbl[0][2]: E0002000, CID: B105E00D, PID: 002BB003 FPB
ROMTbl[0][3]: E0000000, CID: B105E00D, PID: 003BB001 ITM
ROMTbl[0][5]: E0041000, CID: B105900D, PID: 000BB925 ETM
ROMTbl[0][7]: E0043000, CID: B105900D, PID: 001BB908 CSTF
Cortex-M4 identified.
J-Link>

Connection Test

	Type in “h” and hit “Enter” to halt the CPU core.

J-Link Commander Console (Host)

h

Expected Output (Host)

 PC = 1FFEBE76, CycleCnt = 00916A51
 R0 = 00000000, R1 = 000C0000, R2 = 00300000, R3 = 00180000
 R4 = 2001F76F, R5 = 41220000, R6 = 00C000C0, R7 = 2001F76F
 R8 = 2001F770, R9 = 0000051A, R10= 00008C01, R11= 001FC231
 R12= 20009419
 SP(R13)= 2001F730, MSP= 2001F730, PSP= 00000000, R14(LR) = 1FFEBE07
 XPSR = 61000000: APSR = nZCvq, EPSR = 01000000, IPSR = 000 (NoException)
 CFBP = 04000000, CONTROL = 04, FAULTMASK = 00, BASEPRI = 00, PRIMASK = 00

 FPS0 = 00000000, FPS1 = 00000000, FPS2 = 00000000, FPS3 = 00000000
 FPS4 = 00000000, FPS5 = 00000000, FPS6 = 00000000, FPS7 = 00000000
 FPS8 = 00000000, FPS9 = 00000000, FPS10= 00000000, FPS11= 00000000
 FPS12= 00000000, FPS13= 00000000, FPS14= 5C0100C4, FPS15= 00000004
 FPS16= 00000000, FPS17= 00000000, FPS18= 00000000, FPS19= 00000000
 FPS20= 00000000, FPS21= 00000000, FPS22= 00000000, FPS23= 00000000
 FPS24= 00000000, FPS25= 00000000, FPS26= 00000000, FPS27= 00000000
 FPS28= 00000000, FPS29= 00000000, FPS30= 00000000, FPS31= 00000000
 FPSCR= 00000000
 J-Link>

	Type in “g” and hit “Enter” to start the CPU core. No output expected.

J-Link Commander Console (Host)

g

	Type in “mem 0,0” and hit “Enter” to test memory read functionality. No output expected.

J-Link Commander Console (Host)

mem 0,0

	Type in “mem 0,1” and hit “Enter” to test memory read functionality.

J-Link Commander Console (Host)

mem 0,1

Expected Output (Host)

00000000 = 00

	Type in “mem 0,10” and hit “Enter” to test memory read functionality.

J-Link Commander Console (Host)

mem 0,10

Expected Output (Host)

00000000 = 00 FC 01 20 D1 06 00 00 7D 06 00 00 7D 06 00 00 }...}...

Exit the Software

J-Link Commander Console (Host)

exit

OSPI NOR Flash

This guide will show you how to access the 64MB NOR Flash featured on the phyCORE-i.MX8X development kit carrier board. The NOR Flash is accessible through the OSPI interface and can also be used as an alternative boot source.

Available NOR Partitions

	Make sure the NOR interface was initialized properly.

Target (Linux)

mtdinfo

Expected Output

Count of MTD devices: 1
Present MTD devices: mtd0
Sysfs interface supported: yes

	View basic partition information.

Target (Linux)

cat /proc/mtd

Expected Output

dev: size erasesize name
mtd0: 04000000 00020000 "5d120000.spi"

	More detailed information can be viewed using the “mtdinfo” command on a specific partition.

Target (Linux)

mtdinfo /dev/mtd0

Expected Output

mtd0
Name: 5d120000.spi
Type: nor
Eraseblock size: 131072 bytes, 128.0 KiB
Amount of eraseblocks: 512 (67108864 bytes, 64.0 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false
Device is writable: true

Write to OSPI

	Create a random file equal to the size of the /dev/mtd0 partition (512 kBytes).

Target (Linux)

dd if=/dev/urandom of=test.dat bs=1k count=512

Expected Output

512+0 records in
512+0 records out
524288 bytes (524 kB, 512 KiB) copied, 0.0265253 s, 19.8 MB/s

	Copy the generated file to the mtd0 partition using the “flashcp” command.

Target (Linux)

flashcp -v test.dat /dev/mtd0

Expected Output

Erasing blocks: 4/4 (100%)
Writing data: 512k/512k (100%)
Verifying data: 512k/512k (100%)

Reading from OSPI

	Dump the contents of /dev/mtd0 partition to a new file:

Target (Linux)

dd if=/dev/mtd0 of=read.dat bs=1k count=512

Expected Output

512+0 records in
512+0 records out
524288 bytes (524 kB, 512 KiB) copied, 0.167633 s, 3.1 MB/s

	Make sure the output file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum test.dat read.dat

Expected Output

3497f295076c7ef96443b109ab9be333 test.dat
3497f295076c7ef96443b109ab9be333 read.dat

Parallel Camera

This guide will show you how to connect and use the VM-011-COL-M12 phyCAM-P module on the phyCORE-i.MX8X development kit.

[image: ../_images/pcm-065_para-camera.png]

Requirements

	VM-011-COL-M12 phyCAM-P [https://www.phytec.de/produkte/embedded-imaging/kameramodule/vm-011-phycam-p/]

Hardware Setup

	With the board powered off, connect the phyCAM-P module to the camera connector (X33) on the carrier board.

	Power on the development kit and stop in U-Boot.

	Load the device tree overlay required for the parallel camera interface and then boot the board

Target (U-Boot)

setenv overlay_files phytec-imx8qxp-parallel-camera.dtbo
boot

Picture Time!

	To capture a JPEG, use the following gstreamer pipeline.

Target (Linux)

gst-launch-1.0 v4l2src device=/dev/video0 num-buffers=1 ! 'video/x-bayer, format=grbg, width=2592, height=1944' ! bayer2rgb ! videoscale ! 'video/x-raw, width=259, height=518' ! jpegenc ! filesink location=snap.jpeg

Expected Output

Setting pipeline to PAUSED ...
Pipeline is live and does not need PREROLL ...
Setting pipeline to PLAYING ...
New clock: GstSystemClock
[340.554739] bypass csc
[340.557115] input fmt RGB4
[340.559885] output fmt GRBG
Got EOS from element "pipeline0".
Execution ended after 0:00:02.391455375
Setting pipeline to PAUSED ...
Setting pipeline to READY ...
Setting pipeline to NULL ...
Freeing pipeline ...

Viewing the Image

There are a few options to view the image.

	Capacitive Touch Display (LCD-018-070-KAP)

	Using the LCD you can display the image on the LCD using the built in weston software.

Note

Either tap the “X” on the LCD display picture window or press “ctrl+c” to return to normal console usage.

	Once the following command is run you should see your picture on the display.

Target (Linux)

weston-image snap.jpeg

Note

The ‘weston-image’ utility will display the image to the LVDS0 interface by default.

	Local Network

	If you do not have a display, you can use a local network and copy the file from the development kit to your host machine (Linux/Ubuntu).

	Connect the development kit to your local network using eth0 or eth1.

	Find the given ip address using “ifconfig” command.

Target (Ubuntu)

ifconfig

Expected Output

eth0 Link encap:Ethernet HWaddr 3e:c0:4b:d9:5e:fe
 inet addr:<your_ip_address> Bcast:<your_bcast_address> Mask:255.255.255.0
 inet6 addr: fe80::3cc0:4bff:fed9:5efe/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:6983 errors:0 dropped:1511 overruns:0 frame:0
 TX packets:65 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:2283310 (2.1 MiB) TX bytes:13190 (12.8 KiB)

eth1 Link encap:Ethernet HWaddr 22:20:a1:64:cf:ba
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:2 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:140 (140.0 B) TX bytes:140 (140.0 B)

	Use secure copy (scp) on your host machine (Ubuntu/Linux) to copy the file from the development kit to a local directory.

Host Machine Terminal

sudo scp root@<devkit_ip_address>:/home/root/snap.jpeg /home/user/Downloads/

	Local Machine

	View the image from a local machine.

	Power off the kit and remove the SD card

	Plug the SD card into your host machine and copy the snap.jpeg image from the card to your local machine for viewing.

Make a Video

Note

Video stream capture is not yet supported in this BSP.

Fast enough conversion from the Bayer data output by the camera to RGB requires the use of the ISP (which is not yet supported).

PCIe

This guide will show you how to do a basic functional test of the PCIe interface on the phyCORE-i.MX8X development kit.

[image: ../_images/pcm-065_pcie.png]

Requirements

	Intel Gigabit CT Desktop Adapter [https://www.intel.com/content/www/us/en/products/sku/50395/intel-gigabit-ct-desktop-adapter/specifications.html] - PCIe v1.1 (2.5GT/s)

Hardware Setup

Warning

The PCIe interface is not hot swappable and the development kit must be powered off before connecting/disconnecting any PCIe device.

	With the phyCORE-i.MX8X development kit powered off and with the power supply removed, connect the Network Adapter to the PCIe Slot at X81.

[image: ../_images/pcm-065_pcie-callout.png]

	Connect one end of the included CAT5e ethernet cable to the PCIe card and the other end of the cable to your network switch.

	Power on the development kit and boot into Linux.

PCIe Connection

	Verify that the card was properly initialized by checking for the “eth2” interface in the boot log.

Target (Linux)

dmesg | grep eth2

Expected Output

[3.023821] e1000e 0000:01:00.0 eth2: (PCI Express:2.5GT/s:Width x1) 68:05:ca:bd:46:45
[3.023842] e1000e 0000:01:00.0 eth2: Intel(R) PRO/1000 Network Connection
[3.023863] e1000e 0000:01:00.0 eth2: MAC: 3, PHY: 8, PBA No: E46981-008
[6.950556] 8021q: adding VLAN 0 to HW filter on device eth2
[9.646530] e1000e: eth2 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None
[9.654470] IPv6: ADDRCONF(NETDEV_CHANGE): eth2: link becomes ready

Test PCIe

	Test your connection by pinging a known server.

Target (Linux)

ping google.com -c 5

Expected Output

PING google.com (142.250.69.206) 56(84) bytes of data.
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=1 ttl=116 time=4.70 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=2 ttl=116 time=4.71 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=3 ttl=116 time=4.62 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=4 ttl=116 time=4.60 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=5 ttl=116 time=4.61 ms

Power LEDS

The phyCORE-i.MX8X Carrier Board has five green LEDs and two red LEDs which indicate the presence of power on the various supply rails available. These LEDs are not user programmable and are present for hardware debugging purposes only.

[image: ../_images/pcm-065_power-leds.png]
The table below lists the LEDs and information about their corresponding power rails.

Power LEDS

	Reference Designator

	Description

	D10

	Under Voltage Protection Indicator:

The UVP Indicator is set to trigger at 11.0V or lower and will not turn off until the voltage returns to 11.9V.

	D11

	Over Voltage Protection Indicator:

The OVP Indicator is set to trigger at 13.5V or higher and will not turn off until the voltage returns to 12.8V.

	D12

	Input Power Rail Indicator:

A over/under voltage protection circuit controls the 12V_IN voltage rail to ensure a proper input voltage to the system

	D13

	VCC_MOD_3V3 Power Rail Indicator:

The switching regulator (U84) powers the VCC_MOD_3V3 power supply rail which powers the SOM.

	D14

	PGOOD Indicator:

Once the input voltage to SOM is stable this signal indicates that the VCC_12V rail is enabled.

	D15

	VCC_3V3 Power Rail Indicator:

The load switch (U50) powers the VCC_3V3 supply rail which powers the various 3V3 accessory circuits on the Carrier Board.

	D16

	VCC_5V0 Power Rail Indicator:

The load switch (U83) powers the VCC_5V0 supply rail which powers the various 5V0 accessory circuits on the Carrier Board.

Note

The VCC_1V8 rail does not feature an indicator LED:

The adjustable voltage regulator (U60) powers the VCC_1V8 power supply rail which powers the various 1V8 accessory circuits on the Carrier Board.

Power and Reset Buttons

The phyCORE-i.MX8X development kit is provides a reset switch (S11) to reboot the SOM without power cycling the kit.

[image: ../_images/pcm-065_rst-button.png]

RTC

This guide will show you how to use rtc1 on the phyCORE-i.MX8X development kit to verify functionality when power is lost.

Note

You can verify the name of the RTC interface by checking the name file in the interface’s directory.

rtc1 is named after the physical IC populated on the SOM at U115.

RTC Naming

	Verify the RTC interface by checking the “name” file in the interface directory.

Target (Linux)

cat /sys/class/rtc/rtc1/name

Expected Output

rtc-rv3028 16-0052

	Disable NTP (Network Time Protocol)

Note

If your i.MX8X hardware is connected to the internet then it will not allow you to manually set the date and time unless we disable automatic time sync. Use the following command if your phyCORE-i.MX8X is connected to your local area network:

Target (Linux)

timedatectl set-ntp false

	Change the system time to an arbitrary date (I picked July 19th, 2016 at 16:14).

Target (Linux)

date 071916142016

Note

The argument in the above command broken down is:

07-19 16:14 2016

date time year

Expected Output

Tue Jul 19 16:14:00 UTC 2016

	Assign the system time to the hardware clock.

Target (Linux)

hwclock -w -f /dev/rtc1

	Read back the time to ensure it was set properly:

Target (Linux)

hwclock -r -f /dev/rtc1

Expected Output

2016-07-19 16:16:19.257955+00:00

	Power off the phyCORE-i.MX8X, disconnect it from the power supply and wait a minute or so:

Target (Linux)

poweroff

	After the development kit has been powered off for a minute, reboot and login as root. Use the following command to verify that the phyCORE-i.MX8X has been keeping track of the time when turned off:

Target (Linux)

hwclock -r -f /dev/rtc1

Expected Output

2016-07-19 16:18:59.702012+00:00

Note

If you had to disable automatic time sync at the beginning of this guide then you will likely want to re-enable it. Use the following command to do so:

Target (Linux)

timedatectl set-ntp true

SD Card

This guide will show you how to use and access the SD card interface on the phyCORE-i.MX8X development kit carrier board. In order to follow this guide, you will have to boot from the on-board eMMC. See the flash from eMMC for more information.

[image: ../_images/pcm-065_sdcard.png]

Requirements

	SDHC SD card, at least 8GB for PHYTEC’s TISDK release image (Included in development kit)

	Linux Host PC or Virtual Machine (Ubuntu recommended) (Only for Transfering Media from Host)

	SD card reader (operational under Linux) (Only for Transfering Media from Host)

Hardware Setup

	Make sure the boot switch (S10) is set to boot from eMMC and power on the development kit.

[image: ../_images/pcm-065_emmc-bootswitch.png]

Mounting the SD Card

	When an external SD Card is inserted into the development kit it is not mounted by default. It will be available as “/dev/mmcblk1”.

Expected Output

[368.709002] mmc1: host does not support reading read-only switch, assuming write-enable
[368.721029] mmc1: new high speed SDHC card at address 1234
[368.727454] mmcblk1: mmc1:1234 SA04G 3.64 GiB
[368.734130] mmcblk1: p1

	Create a temporary directory and mount the sd card.

Target (Linux)

mkdir /home/root/temp
mount /dev/mmcblk1p1 /home/root/temp

Write to SD Card

	Create a test file in your root directory and then copy the file to the SD Card.

Target (Linux)

echo "Hello World" > test.txt
cp test.txt /home/root/temp/

Read from SD Card

	Copy the test file back from the SD Card to your root directory.

Target (Linux)

cp /home/root/temp/test.txt read.txt

	Make sure the data was not corrupted during the file transfers using md5sum.

Target (Linux)

md5sum /home/root/test.txt /home/root/read.txt

Expected Output

e59ff97941044f85df5297e1c302d260 test.txt
e59ff97941044f85df5297e1c302d260 read.txt

Unmount the SD Card

Warning

Make sure the SD Card is unmounted prior to physically disconnecting it.

Failure to do so may result in loss of data and corruption of files

Target (Linux)

umount /home/root/temp

SPI

This guide will show you how to test the SPI interface on the phyCORE-i.MX8X development kit carrier board.

[image: ../_images/pcm-065_spi.png]

Requirements

	Female to Female Jumper Wire (1x)

	SDHC SD card, at least 8GB for PHYTEC’s TISDK release image (Included in development kit)

	Linux Host PC or Virtual Machine (Ubuntu recommended) (Only for Transfering Media from Host)

	SD card reader (operational under Linux) (Only for Transfering Media from Host)

Hardware Setup

	Connect pins 4 and 5 of X94 using a F-F jumper wire. These pins correspond to SPI3’s MISO and MOSI signals

[image: ../_images/pcm-065_spi-closeup.png]

	Add the following file into the root directory of the file system that you are booting from.

spidev_test

	SD Card “root” Partition Using Ubuntu

Target (Linux)

sudo cp spidev_test /media/user/root/home/root/

	Plug the SD Card into your development kit, power on, and boot into Linux.

	Initiate the loop-back test on the SPI3 interface (/dev/spidev1.0)

Target (Linux)

./spidev_test -v -D /dev/spidev1.0

Expected Output

spi mode: 0x0
bits per word: 8
max speed: 500000 Hz (500 KHz)
TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|
RX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|

Note

If SPI communication is not functioning properly, only “00”s will be printed in the “rx data”.

This can be demonstrated by running the previous command again with the wire removed.

Thermal Zone

This guide will show you how to read the junction temperature of the processor on the phyCORE-i.MX8X SOM.

[image: ../_images/pcm-065_thermal.png]

Reading Temperature

The phyCORE-i.MX8X processor has 1 physical location (thermal zone) where the temperature can be monitored. The available zone can be accessed in the Linux directory /sys/class/thermal/thermal_zone0.

	Output the temperature of thermal zone 0

Target (Linux)

cat /sys/class/thermal/thermal_zone0/temp

Expected Output

38900

This output translates to 38.9C

Temperature Trip Point

	View the type of trip points and the trip point temperatures of thermal zone 0.

Target (Linux)

cat /sys/class/thermal/thermal_zone0/trip_point*

Expected Output

2000
107000
passive
2000
127000
critical

The passive trip point will be reached when the temperature gets below 2C or above 107C. The critical trip point will be reached when the temperature gets below 2C or above 127C

Note

You can set the trip points to a temperature that will trigger an event, such as turning on a fan for active cooling.

In addition you can also build in a critical trip point which will automatically shutdown the system to protect the processor from overheating.

UART

This guide will show you how to use the UART channels on the phyCORE-i.MX8X development kit Carrier Board.

[image: ../_images/pcm-065_uart.png]

Note

Please note that the PCB version 1491.1 has a different location for the X59 header. In more recent revisions of the carrier board (1491.2) the header was relocated to be closer to the center of the board.

[image: ../_images/pcm-065_uart-x59-1491-2-header-correction.jpg]

The UART channels correspond to the following connectors and system paths.

UART Channels

	Hardware Interface

	Connector

	Sysfs Path

	UART0

	X51 (Micro USB)

	/dev/ttyLP0

	UART1

	X99 (DB9 - RS232)

	/dev/ttyLP1

	UART2

	X59 (General Purpose Header)

	/dev/ttyLP2

Note

All of the UART interfaces have muxing options available. Please refer to our Booting Essentials page for more information.

The FTDI device connected to UART0 also provides access to the M40_UART0 through the same connector (not supported in i.MX8X ALPHA1 release).
The connector X99 allows for the use of UART1 a General Purpose (GP) UART (ttyLP1), which is translated to RS-232 levels. Note this UART is muxed with BT functionality.
The connector X59 allows for the use of UART2 a General Purpose (GP) UART (ttyLP2). Note this UART is muxed with the CAN interface and an overlay must be applied in U-Boot.

Requirements

	Micro-USB Cable (Included in kit)

	UART0

	RS-232 to USB adapter cable [https://www.amazon.com/Adapter-Chipset%EF%BC%8CDB9-Serial-Converter-Windows/dp/B0759HSLP1/ref=asc_df_B0759HSLP1/?tag=hyprod-20&linkCode=df0&hvadid=459728334703&hvpos=&hvnetw=g&hvrand=17775540615563995271&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9033314&hvtargid=pla-997424051967&psc=1&mcid=faa39dde941c3100b7c7d3723f97ea91&gclid=Cj0KCQiAnfmsBhDfARIsAM7MKi3HTmSA76Vwo-8jZvb58lPwrne6pqX50s5xfh2_w3IOn1C3ACohOykaAiruEALw_wcB]

	UART1

	USB to TTL Cable 3 pin [https://www.digikey.com/en/products/detail/ftdi,-future-technology-devices-international-ltd/TTL-232R-RPI/4382044?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_High%20ROAS%20Categories&utm_term=&utm_content=&gclid=CjwKCAjwu4WoBhBkEiwAojNdXn0iOQl1LMm-PcDucYCPbxbODvxLKVqUbIiMPjIsuvW5Oy5bxZMyUBoCfKIQAvD_BwE]

	UART2

	3x M/M Jumper Wire [https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_1_sspa?crid=E94ZWTL5MEAG&keywords=F%2FF+jumper+wire&qid=1704932263&sprefix=f%2Ff+jumper+wire%2Caps%2C136&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&psc=1]

	UART2

Hardware Setup

UART0 (Debug)

	This is the default communication interface with the development kit.

[image: ../_images/pcm-065_uart0.png]

UART1

	Connect the RS-232 to USB adapter cable between the Host PC and X99.

[image: ../_images/pcm-065_uart1.png]

UART2

Note

This is not a standard UART and requires the use of female to female jumper wires.

Additionally, UART2 is muxed with the CAN interface through Switch S6 on the carrier board.

	Change S6 to UART2

[image: ../_images/pcm-065_uart2.png]

	Using female to female jumper wires, connect between the pins of connector X59 and the RS-232 to USB adapter cable using the table and images below. Connect the other end of the RS-232 cable to your host PC.

TTL Cable and X59 Header Signals

	GND

	Black Connecter

	Pin 9 (X59)

	TXD

	Orange Connecter

	Pin 6 (X59)

	RXD

	Yellow Connecter

	Pin 5 (X59)

[image: ../_images/pcm-065_uart2_x59-pin-out.png]
[image: ../_images/pcm-065_uart2-x59-ttl.png]

	With the default console (UART0) connected, power on the kit and stop in U-Boot.

	Apply the device tree overlay that enables the UART2 interface. Then boot into Linux.

Target (U-boot)

setenv overlay_files phytec-imx8qxp-uart2.dtbo
boot

UART1 & UART2 Communication

	Open a terminal on your host PC, choose the COM port associated with the UART channel and make sure it has the following port settings.

COM Port Settings

	Baud Rate

	115200

	Data

	8-bit

	Parity

	none

	Stop Bit

	1

	Flow Control

	none

	In Linux setup which UART channel you would like to use (/dev/ttyLP1 or /dev/ttyLP2) and then echo a test message through the UART channel to your other opened terminal.

Target (Linux)

stty -F /dev/ttyLP1 115200
echo 'Testing GP UART!' > /dev/ttyLP1

Expected Output

Testing GP UART!

	Now set up your default UART0 channel to listen for data from the UART channel you are using (/dev/ttyLP1 or /dev/ttyLP2).

Target (Linux)

cat /dev/ttyLP1

	Type something into your secondary UART console and hit enter.

UART1 or UART2 Console Input

Testing!

Expected Output

Testing!

	Use Ctrl+C to stop UART0 from listening for new data.

Enabling UART1 or UART2 as an Additional Serial Console

	From the default UART channel (UART0), use system control to enable and start the desired UART channel (/dev/ttyLP1 or /dev/ttyLP2).

Note

Note that this setting will persist between boots but will not affect the default console in U-Boot and Linux.

	Enable your desired UART channel in system control.

Target (Linux)

systemctl enable serial-getty@ttyLP1.service

Expected Output

Created symlink /etc/systemd/system/getty.target.wants/serial-getty@ttyLP1.service -> /lib/systemd/system/serial-getty@.service.

	Start the service for the UART channel.

Target (Linux)

systemctl start serial-getty@ttyLP1.service

	You should now see the login prompt on the console linked to your desired UART channel. Type “root” to login.

UART1 or UART2 Console Output

imx8x-phycore-kit login:

	Test the console input/output using the echo command.

Target (Linux)

echo "hello from ttyLP0" > /dev/ttyLP1

UART1 or UART2 Console Output

hello from ttyLP0

UART1 or UART2 Console Input

echo "hello from ttyLP1" > /dev/ttyLP0

Expected Output (Linux)

hello from ttyLP1

	Use the following commands to disable the new serial console.

Target (UART1 Linux Console)

systemctl stop serial-getty@ttyS4.service
systemctl disable serial-getty@ttyS4.service

USB

This guide will show you how to use the USB Host and USB OTG capabilities featured on the phyCORE-i.MX8X development kit.

The USB Host interface uses a standard Type-A USB port (X91) and USB OTG interface uses a USB Micro-AB connector (X52).

Note

There is a USB-C interface (X66) but the USB-C device mode is currently not functional.

[image: ../_images/pcm-065_usb.png]

Requirements

	USB Storage Device

	USB Micro-AB to USB-A cable

Configuring the Development Kit for USB Host Mode

	Make sure the development kit is set to USB Host mode.

Target (Linux)

echo host > /sys/kernel/debug/ci_hdrc.0/role

Expected Output

[310.955318] ci_hdrc ci_hdrc.0: EHCI Host Controller
[310.960257] ci_hdrc ci_hdrc.0: new USB bus registered, assigned bus number 3
[310.979804] ci_hdrc ci_hdrc.0: USB 2.0 started, EHCI 1.00
[310.986406] hub 3-0:1.0: USB hub found
[310.990380] hub 3-0:1.0: 1 port detected

	Make sure gpio30 is set to USB_A by echoing “0” to value.

Target (Linux)

cd /sys/class/gpio/
echo 30 > export
echo out > gpio30/direction
echo 0 > gpio30/value

USB Host Connection (FAT32)

	Insert a USB storage device into the USB-A connector (X91).

[image: ../_images/pcm-065_usb-x91.png]

Expected Output

[483.133241] usb 3-1: new high-speed USB device number 2 using ci_hdrc
[483.290193] usb-storage 3-1:1.0: USB Mass Storage device detected
[483.296774] scsi host0: usb-storage 3-1:1.0
[485.299788] scsi 0:0:0:0: Direct-Access Kingston DataTraveler 3.0 PMAP PQ: 0 ANSI: 6
[485.310579] sd 0:0:0:0: [sda] 30277632 512-byte logical blocks: (15.5 GB/14.4 GiB)
[485.319027] sd 0:0:0:0: [sda] Write Protect is off
[485.324390] sd 0:0:0:0: [sda] No Caching mode page found
[485.329739] sd 0:0:0:0: [sda] Assuming drive cache: write through
[485.374504] sda: sda1
[485.380370] sd 0:0:0:0: [sda] Attached SCSI removable disk

	Verify the drive mounted successfully by viewing the contents of the drive:

Target (Linux)

ls /run/media/sda1/

Write to the USB Host Device

	Generate a random 10 MB file to test transferring data from the storage device.

Target (Linux)

dd if=/dev/urandom of=test.file count=10 bs=1M

Expected Output

10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.271254 s, 38.7 MB/s

	Copy the file to your storage device.

Target (Linux)

dd if=test.file of=/run/media/sda1/test.file bs=1M

Expected Output

10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.0946181 s, 111 MB/s

Read from the USB Host Device

	Copy the test file created during the write process back to the host.

Target (Linux)

dd if=/run/media/sda1/test.file of=test1.file bs=1M

Expected Output

10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.0776833 s, 135 MB/s

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum test.file
md5sum test1.file

Expected Output

2290972242afe72ec4c603bcbf51ca05 test.file
2290972242afe72ec4c603bcbf51ca05 test1.file

Unmounting the Drive

Warning

Make sure the drive is unmounted prior to physically disconnecting the device.

Failure to do so may result in loss of data and corruption of files

Target (Linux)

umount /run/media/sda1

Configuring the Development Kit for USB OTG Mode

	Make sure your development kit is configured for USB OTG mode.

Target (Linux)

echo gadget > /sys/kernel/debug/ci_hdrc.0/role

Expected Output

[4225.033238] ci_hdrc ci_hdrc.0: remove, state 4
[4225.037768] usb usb3: USB disconnect, device number 1
[4225.047824] ci_hdrc ci_hdrc.0: USB bus 3 deregistered

	Make sure gpio30 is set to USB_OTG by echoing “1” to value.

Target (Linux)

cd /sys/class/gpio/
echo 30 > export
echo out > gpio30/direction
echo 1 > gpio30/value

Connecting the Development Kit to the Host PC

	Connect the micro-USB cable between the USB OTG port (X52) and your Host PC.

[image: ../_images/pcm-065_usb-x52.png]

	Load the g_serial module.

Target (Linux)

modprobe g_serial

Expected Output

[4362.747928] g_serial gadget: high-speed config #2: CDC ACM config

	Verify that the serial device “/dev/ttyGS0” exists.

Target (Linux)

ls /dev/tty*

Expected Output

/dev/tty /dev/tty21 /dev/tty35 /dev/tty49 /dev/tty62 /dev/ttyp3
/dev/tty0 /dev/tty22 /dev/tty36 /dev/tty5 /dev/tty63 /dev/ttyp4
/dev/tty1 /dev/tty23 /dev/tty37 /dev/tty50 /dev/tty7 /dev/ttyp5
/dev/tty10 /dev/tty24 /dev/tty38 /dev/tty51 /dev/tty8 /dev/ttyp6
/dev/tty11 /dev/tty25 /dev/tty39 /dev/tty52 /dev/tty9 /dev/ttyp7
/dev/tty12 /dev/tty26 /dev/tty4 /dev/tty53 /dev/ttyGS0 /dev/ttyp8
/dev/tty13 /dev/tty27 /dev/tty40 /dev/tty54 /dev/ttyLP0 /dev/ttyp9
/dev/tty14 /dev/tty28 /dev/tty41 /dev/tty55 /dev/ttyLP1 /dev/ttypa
/dev/tty15 /dev/tty29 /dev/tty42 /dev/tty56 /dev/ttyS0 /dev/ttypb
/dev/tty16 /dev/tty3 /dev/tty43 /dev/tty57 /dev/ttyS1 /dev/ttypc
/dev/tty17 /dev/tty30 /dev/tty44 /dev/tty58 /dev/ttyS2 /dev/ttypd
/dev/tty18 /dev/tty31 /dev/tty45 /dev/tty59 /dev/ttyS3 /dev/ttype
/dev/tty19 /dev/tty32 /dev/tty46 /dev/tty6 /dev/ttyp0 /dev/ttypf
/dev/tty2 /dev/tty33 /dev/tty47 /dev/tty60 /dev/ttyp1
/dev/tty20 /dev/tty34 /dev/tty48 /dev/tty61 /dev/ttyp2

	You should now see a device named “PI USB to Serial” on your host PC.

Communicating with the Development Kit

	Start a new serial console using the COM port found in the previous step.

	Use the console connected to the development kit to send a message to USB OTG console.

Target (Linux)

echo "Testing" > /dev/ttyGS0

USB OTG Console Output

Testing

	Set up the development kit console to listen for new messages from the USB OTG console.

Target (Linux)

cat /dev/ttyGS0

	Type a test message into the USB OTG console.

USB OTG Console Input

 Testing

Target (Linux)

Testing

	Use “Ctrl + C” to stop listening for incoming data.

WiFi

This guide will show you how to use the WIFI interface on the phyCORE-i.MX8X development kit carrier board.

[image: ../_images/pcm-065_wifi.png]

Note

To use the WIFI interface on the development kit you must boot from eMMC. See this eMMC guide for more information.

The kit switch configurations do not allow WIFI connectivity while being booted from an SD card because they share the same bus.

Hardware and Software Setup

	Make sure switch S8 is set to WIFI.

	Make sure switch S10 is set to boot from eMMC.

[image: ../_images/pcm-065_emmc-bootswitch.png]

	Power on the development kit and stop in Barebox. You need to configure the WIFI device tree overlay before booting into Linux.

Target (U-Boot)

setenv overlay_files phytec-imx8qxp-wifi.dtbo
boot

Configure WiFi

	Open the “wpa_supplicant” file to add your network credentials.

Edit the file to match the contents below but be sure to change “<your_network_name>” and “<your_network_password>” to the corresponding credentials for your target network. Make sure keep the quotes.

Target (Linux)

vi /etc/wpa_supplicant.conf

Tip

Hit ‘i’ key to enter “Insert Mode”.
Using the arrow keys to navigate.
ESC to go back to “Command mode”.
Now enter “:wq” to write (save) the file and quit.
More information about the editor can be found here: https://www.guru99.com/the-vi-editor.html

wpa_supplicant.conf

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1

network={
 ssid="<your_network_name>"
 key_mgmt=WPA-PSK
 psk="<your_network_password>"
}

Establish the Connection

	Load the credentials from the wpa_supplicant.conf file and establish the link.

Target (Linux)

wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf -B

Expected Output

Successfully initialized wpa_supplicant
[127.580778] ieee80211 phy0: brcmf_cfg80211_add_iface: iface validation failed: err=-16
Failed to create interface p2p-dev-wlan0: -16 (Device or resource busy)
nl80211: Failed to create a P2P Device interface p2p-dev-wlan0
P2P: Failed to enable P2P Device interface
root@imx8x-phycore-kit:~# [128.906744] IPv6: ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready

	Confirm wlan0 is connected to the network.

Target (Linux)

iw dev wlan0 link

Expected Output

Connected to b0:b9:8a:5c:15:dc (on wlan0)
 SSID: <your_network_name>
 freq: 2422
 RX: 4442 bytes (13 packets)
 TX: 4330 bytes (24 packets)
 signal: -72 dBm
 rx bitrate: 1.0 MBit/s
 tx bitrate: 11.0 MBit/s

 bss flags: short-preamble short-slot-time
 dtim period: 2
 beacon int: 200

	Verify that WIFI is unblocked.

Target (Linux)

rfkill unblock 0
rfkill list

Expected Output

0: phy0: Wireless LAN
 Soft blocked: no
 Hard blocked: no

	Launch the WIFI client.

Target (Linux)

udhcpc -i wlan0

Expected Output

udhcpc: started, v1.31.0
udhcpc: sending discover
udhcpc: sending select for <obtained_ip_address>
udhcpc: lease of <obtained_ip_address> obtained, lease time 604800
/etc/udhcpc.d/50default: Adding DNS <DNS_ip_address>

	Verify that the “/etc/resolv.conf” file has your local nameserver ip address set.

Target (Linux)

vi /etc/resolv.conf

Expected Output

Generated by Connection Manager
nameserver <DNS_ip_address>

	Test your connection

Target (Linux)

ping www.google.com -c 5

Expected Output

PING google.com (142.250.69.206) 56(84) bytes of data.
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=1 ttl=116 time=15.3 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=2 ttl=116 time=28.1 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=3 ttl=116 time=29.7 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=4 ttl=116 time=26.9 ms
64 bytes from sea30s08-in-f14.1e100.net (142.250.69.206): icmp_seq=5 ttl=116 time=13.3 ms

--- google.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4006ms
rtt min/avg/max/mdev = 13.339/22.677/29.674/6.889 ms

Note

If the nameserver is not automatically generated you will need to use the ip address of the website/network location you are trying to reach.

Booting Essentials

This section of the product wiki contains guides to update and boot from different boot sources on the phyCORE-i.MX8X SOM.

	SD Card

	eMMC

	Copying Files to the Device

Boot Modes

The phyCORE-i.MX8X development kit supports booting from many different interfaces. By default, the developement kit is set to boot from the micro-SD card. To change the boot device, DIP switches S2, S5 and S10 can be used. Boot switches should be changed with power off.

Boot Settings (S2 & S5)

	ON

	OFF

	Enables S10 to override default boot sequence

	Disables S10. Allowing the SOM to boot with default boot sequence

Boot Settings

	SD

	eMMC

	UART

	Flex SPI

	[image: ../_images/pcm-065-sd-bootswitch.png]

	[image: ../_images/pcm-065_emmc-bootswitch.png]

	[image: ../_images/pcm-065_uart_bootswitch.png]

	[image: ../_images/pcm-065_flex_spi_bootswitch.png]

SD Card

Create a Bootable SD Card

In order to boot the phyCORE-i.MX8X development kit into Linux, it must load valid software from a memory storage device. It is typical for production systems to boot software from an onboard (non-removeable) memory storage device such as eMMC memory but booting from an SD Card is more convenient during development. The phyCORE-i.MX8X development kit is configured to boot from an SD Card by default.

A pre-configured SD Card should have been included in the box with your development kit but this guide will walk through the creation of a bootable SD Card using Pre-Built Binaries or images you have generated on your own by following the Build the BSP guide.

Requirements

	Ubuntu 18.04 LTS, 64-bit Host Machine

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	SD Card Reader operational under the Ubuntu Host Machine

	4GB SD Card or larger

Flashing a Complete Image

Flashing is a term used to describe the process of burning software images to a flash memory storage device, hence flashing. This section of the guide will outline the steps for flashing the complete .sdcard.bz2 image format to an SD Card. The .sdcard.bz2 image format is a compressed binary consisting of all the necessary binaries needed for booting the phyCORE-i.MX8X into Linux. This includes the bootloader, kernel and root filesystem.

	Run the following command without the SD Card connected to the Host Machine.

Host (Ubuntu)

ls /dev/sd*

	Connect the SD Card to the Ubuntu Host Machine.

	Run the following command again with the SD Card connected to the Host Machine.

Host (Ubuntu)

ls /dev/sd*

	The SD Card device name is of the form /dev/sd[a-z] in Ubuntu and the letter identifier along with any partitions present on the SD Card are enumerated upon connecting the SD Card to the Host Machine. Look at the second output of the command and look for new devices that appeared there. The new device will correspond to the SD Card,. Remember the /dev/sdX identifier corresponding to your SD Card.

Warning

Be confident you have the correct /dev/sdX device identified for your SD Card before proceeding.
It is very easy to accidently specify your Host Machine’s hard drive in the steps following this warning. Doing so would corrupt your Host Machine. A good sanity check is to verify which disk your system has mounted as the root filesystem and ensuring you DO NOT specify that same disk when working through the remainder of this guide. Mounted devices can be viewed with the ‘mount’ utility, here is an example:

Example

user@ubuntu:~$ mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
udev on /dev type devtmpfs (rw,nosuid,relatime,size=8170248k,nr_inodes=2042562,mode=755)
 devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)
 tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=1640224k,mode=755)
 /dev/sda1 on / type ext4 (rw,relatime,errors=remount-ro,data=ordered)...

We can see in the example that /dev/sda1 is mounted on ‘/’, which is the root directory of the root filesystem. /dev/sda should NOT be mistaken for your SD Card.

	Unmount all partitions of the SD Card. Remember to replace ‘X’ with the identifier found in the previous step:

Host (Ubuntu)

umount /dev/sdX*

	Navigate to the directory containing the ‘.sdcard.bz2’ file you wish to flash. This might be wherever you downloaded the pre-built image or it could be the deployment directory of your local BSP build at $BUILDDIR/tmp/deploy/

Host (Ubuntu)

cd <image location>

	Flash the ‘.sdcard.bz2’ software image to the SD Card:

Host (Ubuntu)

bzip2 -dc <YOCTO_IMAGE>-<YOCTO_MACHINE>.sdcard.bz2 | sudo dd of=/dev/sdX bs=1M && sync

Note

Note that you have to flash the SD Card image to the entirety of the SD Card. This is done by specify the output location of the flashing command as “of=/dev/sdX”, without a numbered partition specified. For example, if you try to flash the SD Card image to /dev/sdX1 this will result in a improperly formatted SD Card.

Updating Individual Parts of the SD Card

Once the SD Card has been formatted the first time via flashing the complete .sdcard.bz2, you do not need to flash the entire contents of the SD Card image again to update the image components. The bootloader, kernel and root filesystem can be updated individually (depending on the changes being tested) to potentially save a lot of time during development.

Updating the Kernel

	First, remove the existing kernel image and device tree files:

Host (Ubuntu)

rm /media/<user>/Boot imx8x-/Image
rm /media/<user>/Boot\ imx8x-/*phytec-imx8qxp-*.dtb*

	Copy the new Linux kernel, device tree binaries and applicable device tree overlays to the SD Card’s Boot partition:

Host (Ubuntu)

cp Image /media/<user>/Boot imx8x-/; sync
cp Image*.dtb /media/<user>/Boot\ imx8x-/phytec-imx8qxp-phycore-rdk-emmc.dtb; sync
cp Image-*.dtbo /media/<user>/Boot\ imx8x-/; sync

Note

By default, U-Boot loads the dtb file named “phytec-imx8qxp-phycore-rdk-emmc.dtb” as the active device tree during boot. In order to instruct U-Boot to load a different device tree by a different name, reference the following steps:

	Power on the board and press any key to stop autoboot and enter U-Boot.

	Type the following commands:

Target (U-Boot)

setenv fdt_file <dtb name>
saveenv
reset

U-Boot will now load the dtb file named ‘<dtb name>’ automatically during subsequent boots.
Reset the U-Boot Environment to Default Settings

In order to revert the U-Boot environment back to its original settings, run the following:

Target (U-boot)

env default -f -a
saveenv
boot

Updating the Root Filesystem

	Unmount the SD Card’s root filesystem partition (the root filesystem takes up the entire second partition):

Host (Ubuntu)

umount /dev/sdX2

Note

The ‘X’ here should be replaced with the identifier specifying your SD Card.

	Flash the new filesystem to the SD Card:

Host (Ubuntu)

sudo dd if=fsl-image-validation-imx-imx8x-phycore-kit.ext4 of=/dev/sdX2 bs=1M && sync

Note

The filesystem has to be flashed to the 2nd partition of the SD Card. A good sanity check is to mount the filesystem after is has been flashed to ensure it mounts as excepted.

Updating the Bootloader (U-Boot and SCFW)

	Unmount all partitions of the SD Card:

Host (Ubuntu)

umount /dev/sdX*

	Flash the bootloader binary to the SD Card:

Host (Ubuntu)

sudo dd if=imx-boot-imx8x-phycore-kit-sd.bin-flash of=/dev/sdX bs=1k seek=32 && sync

Tip

The imx-boot-imx8x-phycore-kit-sd.bin-flash binary can be thought of as a bundle that incorporates both u-boot.bin and the security binaries into one easy-to-flash file.

Boot from SD Card

The phyCORE-i.MX8X development kit is configured to boot from an SD Card slot by default and basic steps for performing this and establishing serial communication are outlined in the Quickstart. This guide is intended as a quicker but more in-depth reference:

Boot Switch SD Card Settings

[image: ../_images/pcm-065-sd-bootswitch.png]
Configuration Switch Settings

	S2 should be set to ON - USDCH1 enabled.

Warning

There is a silkscreen error on the 1491.0 PCB revision of the phyCORE-i.MX8X Carrier Board associated with the the Switch S2. The silkscreen will correctly reflect the following in future revisions 1491.1 and on:

ON = USDHC1
OFF = NAND

	S5 should be set to ON - FTDI Debug Port enabled.

Connecting the power supply to the phyCORE-i.MX8X development kit with the board configured as outlined above will instruct the boot ROM to load the U-Boot bootloader from the SD Card. If you do not interrupt autoboot, U-Boot will load Linux and pass control to it automatically.

Configuring the Bootloader

When prompted in the initial console message upon connecting power, you can stop autoboot by pressing any key to manually configure the bootloader.

	If the use of device tree overlays are required, such as for enabling UART2, WIFI, LVDS0/1, or the parallel camera, use the following command to list out your desired overlays by defining the ‘overlay_files’ variable:

Target (U-Boot)

List all overlays that apply to your use case

setenv overlay_files phytec-imx8qxp-uart2.dtbo phytec-imx8qxp-wifi.dtbo phytec-imx8qxp-lvds.dtbo phytec-imx8qxp-parallel-camera.dtbo
saveenv
boot

	Once you reach a login prompt, type “root” and hit Enter (there is no password by default).

Changes to the bootloader can be reverted back to their defaults by again stopping in U-Boot, following a shutdown or reboot. Once stopped in U-Boot, use the following to restore the default settings:

Target (U-Boot)

env default -f -a
saveenv
boot

eMMC

Flash the eMMC

In addition to creating a standard SD card formatted with the phyCORE-i.MX8X Linux BSP, the following steps are required to further format the SD Card to hold a BSP Image destined for the onboard eMMC flash memory. This is because neither the SD Card’s boot or root filesystem partitions are formatted with enough space to contain an image of the SD Card itself by default.

Preparing the SD Card

Execute the following from the Ubuntu Host Machine

	Connect the bootable SD Card to the Ubuntu Host Machine.

	Create a new partition on the SD Card that is large enough to hold the SD Card image:

Host (Ubuntu)

sudo fdisk /dev/sdX

p print current partitions
n new partition
p primary
3 partition number
<start> enter value after end of partition 2 (from partition table).
<enter> Use default value for last sector to take advantage of the whole SD Card
t Change partition system id
3 Partition number
c FAT32
w write table to disk and exit

sudo mkfs.vfat -n "data" /dev/sdX3
umount /dev/sdX*

Warning

The SD Card image will not fit in the SD card’s partitions created by the SD card image by default thus requiring this 3rd partition. You could alternatively enlarge the amount of extra space on the root partition manually or via recipe modifications when building the BSP.

	Physically disconnect the SD Card from the Host Machine and then re-connect it. This will ensure that your host machine rereads the new partition information on the SD Card.

	Copy the SD Card image to the new “data” partition of the SD Card:

Host (Ubuntu)

cp fsl-image-validation-imx-imx8x-phycore-kit.sdcard.bz2 /media/<user>/data/; sync

	Safely Eject the SD Card.

Flashing Images from Linux onto the eMMC

	Configure the boot switches to boot from SD Card as described in the Boot Switch Interface Guide.

	Boot from the SD Card into Linux.

	Unmount all eMMC partitions:

Target (Linux)

umount /dev/mmcblk0p*

	Flash the eMMC with the SD Card image:

Target (Linux)

bzip2 -dc /run/media/mmcblk1p3/fsl-image-validation-imx-imx8x-phycore-kit.sdcard.bz2 | dd of=/dev/mmcblk0 bs=1M && sync

Boot from eMMC

Once you have flashed the eMMC according to the instructions outlined in the Flash the eMMC guide, this guide may be used to configure the phyCORE-i.MX8X to then boot from the flashed eMMC.

After flashing the eMMC, power off the board and configure the Boot Switch to boot from eMMC:

Boot Switch eMMC Settings

[image: ../_images/pcm-065_emmc-bootswitch.png]
Configuration Switch Settings

	S5 should be set to ON - FTDI Debug Port enabled.

Configuring the Bootloader

Connecting the power supply to the phyCORE-i.MX8X development kit with the board configured as outlined above will instruct the boot ROM to load the U-Boot bootloader from the eMMC flash onboard the SOM. Autoboot will attempt to run however the boot scripts implemented in U-Boot are configured for loading Linux from the SD Card and autoboot will fail.

Warning

Forgetting to change the environment variables in U-Boot can cause some confusion so be warned!

	If the SD Card is still connected, U-Boot (loaded from eMMC) will still search the SD Card for the next stage of boot by default. This means you will boot into Linux from SD Card unless you change these variables.

	If the SD Card was removed or disabled before powering on the kit, U-Boot will fail to load the kernel and it will try some fall back boot modes. You will see this output:

Example Output

Hit any key to stop autoboot: 0
MMC: no card present
MMC: no card present
** Bad device mmc 1 **
MMC: no card present
** Bad device mmc 1 **

Just reset the board and ensure to change the environment variables so that U-Boot searches the eMMC.

Stop in U-Boot after resetting the board. Use the following commands to instruct U-Boot to search the eMMC for the kernel and root filesystem:

Target (U-boot)

setenv mmcdev 0
setenv mmcroot "/dev/mmcblk0p2 rootwait rw"

If the use of overlays is required, such as for enabling UART2, WiFi, LVDS0/1, or the parallel camera, stop in U-Boot and define the ‘overlay_files’ variable:

Target (U-boot)

setenv overlay_files phytec-imx8qxp-uart2.dtbo phytec-imx8qxp-wifi.dtbo phytec-imx8qxp-lvds.dtbo phytec-imx8qxp-parallel-camera.dtbo # Choose all that apply to your use case

Save any changes and boot into Linux:

Target (U-boot)

saveenv
boot

Log into Linux with “root”

Copying Files to the Device

There are several ways of transferring files to and from your target device. Please reference the following for some possible methods.

Using a Network

Note

Before being able to transfer files using network protocols, you will first need to establish a network connection and know the ip address of the target device. See the Ethernet Interface guide for more information.

Secure Copy ProtocolLink to Secure Copy Protocol

Secure Copy Protocol (SCP) is built around a Secure Shell connection (SSH) and offers all the same security features. One advantage of using this method for transferring single files is that it is generally pretty fast but you won’t get interactive functionality when pulling multiple files from a remote server. For example, you won’t be able to list out directory contents and see what other files are available. SCP also has no file size limitations.

Ubuntu Host Machine

	Using the Terminal on your host machine, navigate to the directory containing the file you wish to transfer to the target device.

Host (Ubuntu)

cd <insert-path-to-files>

	Use the following command to transfer your file:

Host (Ubuntu)

sudo scp <insert-name-of-file> root@<insert-IP-address>:~

	Your copied file will appear in the root directory on the target device.

	To go the other direction and retrieve files from the Target Hardware, just flip the source and destination arguments:

Host (Ubuntu)

sudo scp root@<insert-IP-address>:<insert-name-of-file> <insert-path-to-destination>

Windows Host Machine

In order to use the SCP protocol using your Windows host machine, you will first need the PSCP command-line utility (which is not a standard internal command).

	Use this link to download the most recent, stable version of pscp.exe (https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html).

	Move pscp.exe to your Programs Folder and setup a PATH variable for ease of use.

	Using the Command Prompt on your host machine, navigate to the directory containing the file you wish to transfer to the target device.

Host (Windows)

dir <insert-path-to-files>

	Use the following command to transfer your file:

Host (Windows)

pscp -scp <insert-name-of-file> root@<insert-IP-address>:~

	Your copied file will appear in the root directory on the target device.

	To go the other direction and retrieve files from the Target Hardware, just flip the source and destination arguments:

Host (Windows)

pscp -scp root@<insert-IP-address>:<insert-name-of-file> <insert-path-to-destination>

Network Filesystem ServerLink to Network Filesystem Server

A Network Filesystem Server (NFS) gives other systems the ability to mount a filesystem stored on a Host PC which is exported over the network. Aside from the initial setup, this is the easiest way to transfer files back and forth between systems for long term development.

Host Setup

	On your Host Machine, create a directory to use as the filesystem on the NFS Server and ensure it is accessible:

Host (Ubuntu)

sudo mkdir -p /mnt/testNFS
sudo chown nobody:nogroup /mnt/testNFS
sudo chmod 777 /mnt/testNFS

	Run the following to update/install NFS packages on your Ubuntu host Machine:

Host (Ubuntu)

sudo apt-get update
sudo apt install nfs-kernel-server

	Using your favorite text editor, open the file configuring exported filesystems. Use the following command to do this using the Vim Text Editor:

Host (Ubuntu)

sudo vim /etc/exports

	Add the following line to the end of the file (replace Xs with your phyCORE-i.MX8X’s IP address):

Host (Ubuntu)

/mnt/testNFS XXX.XXX.XXX.XXX(rw,sync,no_root_squash,no_subtree_check)

	Save and close the file.

	Export the NFS Server:

Host (Ubuntu)

sudo exportfs -va

	Modify your firewall to allow your i.MX7 to mount the NFS Server’s filesystem:

Host (Ubuntu)

firewall-cmd --add-port=2049/tcp

	Restart your NFS Server:

Host (Ubuntu)

sudo systemctl restart nfs-kernel-server

	Now, you can add files to /mnt/testNFS to make them available to any clients that mount this NFS server.

Client Setup

Now that the Host Machine is setup as a NFS server, it is time to configure the phyCORE-i.MX8X as the client.

	Create a directory to mount the NFS Server’s filesystem to:

Target (Linux)

mkdir ~/testNFS

	Mount the NFS Server (replace <host ip address> with the ip address of your Host Machine you set the NFS server on):

Target (Linux)

sudo mount -t nfs <host ip address>:/mnt/testNFS ~/testNFS/

	Now check out the contents of the mounted NFS server. The file we placed there previously should already be there:

Target (Linux)

ls ~/testNFS/

	You should find that when you add a file to this NFS directory (from either the side of the Server of the Client) that it appears automatically wherever the NFS server is mounted.

Using Removable Storage Devices

USB Storage Device

These instructions walkthrough exercising the USB Host interface on the development kit, but since your Ubuntu Host Machine is also a Linux system, you can similarly transfer files to the same storage media to exchange files.

The USB Host interface uses a standard Type-A USB port (X91) and USB OTG interface uses a USB Micro-AB connector (X52).

Warning

There is a USB-C interface (X66) but the USB-C device mode is currently not functional.

[image: ../_images/pcm-065_usb.png]
Requirements

	USB Storage Device

	USB Micro-AB to USB-A cable

Configuring the Development Kit for USB Host Mode

	Make sure the development kit is set to USB Host mode.

Target (Linux)

echo host > /sys/kernel/debug/ci_hdrc.0/role

Expected Output

[310.955318] ci_hdrc ci_hdrc.0: EHCI Host Controller
[310.960257] ci_hdrc ci_hdrc.0: new USB bus registered, assigned bus number 3
[310.979804] ci_hdrc ci_hdrc.0: USB 2.0 started, EHCI 1.00
[310.986406] hub 3-0:1.0: USB hub found
[310.990380] hub 3-0:1.0: 1 port detected

	Make sure gpio30 is set to USB_A by echoing “0” to value.

Target (Linux)

 cd /sys/class/gpio/
echo 30 > export
echo out > gpio30/direction
echo 0 > gpio30/value

USB Host Connection (FAT32)

	Insert a USB storage device into the USB-A connector (X91).

[image: ../_images/pcm-065_usb-x91.png]

Expected Output

[483.133241] usb 3-1: new high-speed USB device number 2 using ci_hdrc
[483.290193] usb-storage 3-1:1.0: USB Mass Storage device detected
[483.296774] scsi host0: usb-storage 3-1:1.0
[485.299788] scsi 0:0:0:0: Direct-Access Kingston DataTraveler 3.0 PMAP PQ: 0 ANSI: 6
[485.310579] sd 0:0:0:0: [sda] 30277632 512-byte logical blocks: (15.5 GB/14.4 GiB)
[485.319027] sd 0:0:0:0: [sda] Write Protect is off
[485.324390] sd 0:0:0:0: [sda] No Caching mode page found
[485.329739] sd 0:0:0:0: [sda] Assuming drive cache: write through
[485.374504] sda: sda1
[485.380370] sd 0:0:0:0: [sda] Attached SCSI removable disk

	Verify the drive mounted successfully by viewing the contents of the drive:

Target (Linux)

ls /run/media/sda1/

Write to the USB Host Device

	Generate a random 10 MB file to test transferring data from the storage device.

Target (Linux)

dd if=/dev/urandom of=test.file count=10 bs=1M

Expected Output

10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.271254 s, 38.7 MB/s

	Copy the file to your storage device.

Target (Linux)

dd if=test.file of=/run/media/sda1/test.file bs=1M

Expected Output

10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.0946181 s, 111 MB/s

Read from the USB Host Device

	Copy the test file created during the write process back to the host.

Target (Linux)

dd if=/run/media/sda1/test.file of=test1.file bs=1M

Expected Output

10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.0776833 s, 135 MB/s

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum test.file
md5sum test1.file

Expected Output

2290972242afe72ec4c603bcbf51ca05 test.file
2290972242afe72ec4c603bcbf51ca05 test1.file

Unmounting the Drive

Warning

Make sure the drive is unmounted prior to physically disconnecting the device.

Failure to do so may result in loss of data and corruption of files

Target (Linux)

umount /run/media/sda1

The Flashed SD Card (Root Partition)

	In order to copy files to the primary boot media of the phyCORE-i.MX8X development kit, you will first have to power it off. Do this in your serial console with the following:

Target (Linux)

poweroff

	Remove the SD Card and connect it to your Ubuntu Host Machine. You will not be able to place files on the SD Card using Windows because the SD Card is formatted for Linux and Windows wont recognize it.

	Drag and drop the file to the rootfs partition of the SD Card using the GUI like you normally would!

	In order to copy files to the SD Card using the Terminal, this can be done with the standard ‘cp’ (copy) command. See the above section utilizing a USB storage device for more information.

	The next time you boot your phyCORE-i.MX8X into Linux, using the same SD Card, your file should be present in the filesystem.

Warning

	The SD Card is formatted with a minimal root filesystem size by default and in order to transfer larger files it may become necessary to increase its size to take advantage of the full size of the SD Card.
	

Increase the Root Filesystem Partition of the SD Card

	Run the following command without the SD Card connected to the Host Machine.

Host (Ubuntu)

ls /dev/sd*

	Connect the bootable SD Card to your Ubuntu Host Machine.

	Run the following command with the SD Card connected to the Host Machine.

Host (Ubuntu)

ls /dev/sd*

The SD Card device name is of the form /dev/sd[a-z] in Ubuntu and the letter identifier along with any partitions (signified by the numbers following the letter) on the SD Card are enumerated upon connection to the Host Machine. Look at the second output of the command and look for new devices that appeared there, the new device will correspond to the SD Card. Remember the /dev/sdX identifier corresponding to your SD Card as you will need to use this in the following step.

Warning

Be confident you have the correct /dev/sdX device identified for your SD Card before proceeding. Specifying the incorrect disk using the fdisk utility in the steps below can potentially destroy your Virtual Machine and will require you to set it back up again from scratch.

	It is best to first backup the SD Card to a file just in case something goes terribly wrong and you end up losing its contents:

Host (Ubuntu)

umount /dev/sdX* #unmount the entire SD Card, not just any single partition
sudo dd if=/dev/sdX of=~/backup.sdcard bs=1M conv=fsync && sync

	Use the fdisk utility and provided command sequence to create a new, larger root filesystem partition in the SD Card’s partition table:

Host (Ubuntu)

sudo fdisk /dev/sdX

fdisk is an interactive utility, use the following command sequence
p (print the partition table and note the starting sector of the 2nd partition, call this START2. START2=196608 using the pre-built software)
d (delete a partition)
2 (select the root filesystem)
n (create a new partition)
p (make it a primary partition)
2 (make it the second partition)
START2 (specify the same starting sector for the 2nd partition as before)
ENTER (just hit ENTER to use the default size, which will automatically use up the remaining space on the SD Card)
w (write the changes)

	It’s generally a good idea to disconnect and reconnect the SD Card from the Host Machine at this point to ensure the new partition table is being picked up by the kernel.

	Finally, grow the root filesystem to take up the entire space in the partition:

Host (Ubuntu)

sudo resize2fs /dev/sdX2

Non-flashed SD Card (Storage Device)

Note

In order to follow this guide, you will have to boot from the on-board eMMC. See this eMMC guide for more information.

[image: ../_images/pcm-065_sdcard.png]
Requirements

	SDHC SD card, at least 8GB for PHYTEC’s TISDK release image (Included in development kit)

	Linux Host PC or Virtual Machine (Ubuntu recommended) (Only for Transfering Media from Host)

	SD card reader (operational under Linux) (Only for Transfering Media from Host)

Hardware Setup

	Make sure the boot switch (S10) is set to boot from eMMC and power on the development kit.

[image: ../_images/pcm-065_emmc-bootswitch.png]

Mounting the SD Card

	When an external SD Card is inserted into the development kit it is not mounted by default. It will be available as “/dev/mmcblk1”.

Expected Output

[368.709002] mmc1: host does not support reading read-only switch, assuming write-enable
[368.721029] mmc1: new high speed SDHC card at address 1234
[368.727454] mmcblk1: mmc1:1234 SA04G 3.64 GiB
[368.734130] mmcblk1: p1

	Create a temporary directory and mount the sd card.

Target (Linux)

mkdir /home/root/temp

Tip

Writing to an SD Card is much like writing to a USB storage device, please reference the USB steps above for transferring files to and from the device.

Application Development

This section of the product wiki contains guides for common development tasks associated with application development for the phyCORE-i.MX8X SOM.

	Install the SDK

	Hello World

	Blink

Install the SDK

The SDK includes a cross-compilation toolchain and sysroots directory for building your applications against, allowing your software that is built on your Ubuntu Host Machine to be executed on the phyCORE-iMX8X SOM. This guide walks through the installation of the SDK and how to use it to cross-compile a basic Hello World example for running on the phyCORE-i.MX8X’s Cortex-A35 cores.

Note

This guide will walkthrough the SDK installation using a the pre-built SDK installer, but head over to the :ref: BuildTheBSP-8X guide if you require building your own.

Requirements

The following system requirements are recommended to successfully install the SDK and to eventually build the BSP in its entirety. Deviations from these requirements may suffice if you don’t intend to use the same machine for building the BSP:

	Ubuntu 18.04 LTS, 64-bit Host Machine with root permission

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	200GB free disk space or greater (can be smaller if you don’t intend to build the BSP)

	8GB of RAM or greater

	4x processing cores available to the Ubuntu Host Machine or greater

	SD card reader operational under Linux

	Active Internet connection

Host Setup

To meet the general requirements for working with the pre-built SDK, as well as for building the BSP, install the following packages to the Ubuntu Host Machine:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential chrpath socat cpio python python3 python3-pip python3-pexpect xz-utils libsdl1.2-dev curl vim libyaml-dev repo

Download the Pre-Built SDK Installer

First, navigate to a directory that is dedicated to hold your downloaded files:

Host (Ubuntu)

cd ~/Downloads

Use the following command to download the pre-built SDK installer to the current working directory:

Host (Ubuntu)

wget https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/fsl-imx-xwayland-glibc-x86_64-imx-image-multimedia-aarch64-imx8x-phycore-kit-toolchain-5.4-zeus.sh

Note

Links for downloading the pre-built SDK installer, along with other pre-built binaries, can be found on the :ref: PreBuilts-8X page.

Change the permissions of the installer:

Host (Ubuntu)

sudo chmod a+x fsl-imx-xwayland-glibc-x86_64-imx-image-multimedia-aarch64-imx8x-phycore-kit-toolchain-5.4-zeus.sh

Run the installer:

Host (Ubuntu)

./fsl-imx-xwayland-glibc-x86_64-imx-image-multimedia-aarch64-imx8x-phycore-kit-toolchain-5.4-zeus.sh

When prompted, install the SDK to the default location at /opt/fsl-imx-xwayland/5.4-zeus or, optionally, create a custom install location. This and other guides in the phyCORE-i.MX8X wiki will assume you installed the SDK to the default location but just remember where if you choose somewhere else.

Source the Cross-Compilation Enviroment

This script will have to be sourced in every new terminal session you plan to use for cross-platform development:

Host (Ubuntu)

. /opt/fsl-imx-xwayland/5.4-zeus/environment-setup-aarch64-poky-linux

this command is equivalent

source /opt/fsl-imx-xwayland/5.4-zeus/environment-setup-aarch64-poky-linux

Tip

Remember the location of the environment-setup-aarch64-poky-linux script and the command you used to source it, you’ll need these handy throughout your development!

Now you can leverage the cross-compilation toolchain in your project:

Example Output

user@ubuntu:~/temp$ which $CC
/opt/fsl-imx-xwayland/5.4-zeus/sysroots/x86_64-pokysdk-linux/usr/bin/aarch64-poky-linux/aarch64-poky-linux-gcc

Hello World

This guide will walkthrough the creation and cross-compilation of a Hello World executable intended to run on the phyCORE-i.MX8X.

Note

In order to follow this guide, you must first :ref: installSDK-8X and source the cross compilation environment.

Let’s make a project directory to contain the Hello World source code:

Host (Ubuntu)

mkdir ~/helloworld-project
cd ~/helloworld-project

Create the main Hello World application source code file using your favorite text editor:

Host (Ubuntu)

vim helloworld.c

Edit the contents of the file to reflect the following and remember to save your changes when you are done!

helloworld.c

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
}

Cross-Compile the Hello World project:

Host (Ubuntu)

$CC -O helloworld.c -o helloworld

You should now see an executable of the name “helloworld” in the current working directory. Remember that this file was cross-compiled so it won’t work as expected if you try to execute it on your Ubuntu Host Machine. We can confirm the target architecture of the binary like this:

Example Output

user@ubuntu:~/helloworld-project$ file helloworld
helloworld: ELF 64-bit LSB shared object, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, BuildID[sha1]=565c9da2e79cc69861115a358f21c4e8c01ba9fa, for GNU/Linux 3.14.0, not stripped

Now, transfer the executable to the phyCORE-i.MX8X while it is booted into Linux. Check out the guide, :ref: cpyfiletodevice-8X, for a bunch of options on how to do this. I recommend just quickly copying the “hello” file to a USB thumb drive to transfer files to the running target or, if you have time, setting up a network file sharing for long term development.

Once the file is transferred to the phyCORE-i.MX8X, navigate to the directory containing it using the target console and run the binary:

Target (Linux)

./helloworld

Exmaple Output

root@imx8x-phycore-kit:~# ./helloworld
Hello World!

Blink

This guide will walkthrough the cross-compilation of a Blink executable intended to run on the phyCORE-i.MX8X development kit. This demo will blink the D31 User LED by accessing the underlying GPIO hardware registers, the best reference to explain what is going here at the register level is the Technical Reference Manual for the i.MX8X processor, which can be downloaded from NXP’s i.MX8X Documentation [https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8x-family-arm-cortex-a35-3d-graphics-4k-video-dsp-error-correcting-code-on-ddr:i.MX8X#documentation] page.

[image: ../_images/pcm-065_blink-user-led.png]

Note

	In order to follow this guide, you must first Install the SDK and source the cross compilation environment.

	In order to follow this guide, the User LED on your phyCORE-i.MX8X development kit must not be already tied to any drivers. If you followed the Modifying the BSP guide then you might have tied a driver to the User LED, the change introduced by that guide will need to be reverted. An easy way to do this quickly would be to just make a second SD Card using a pre-built image, check out the Create a Bootable SD Card guide for more information!

Let’s make a project directory to contain the Blink source code:

Host (Ubuntu)

mkdir ~/blink-project
cd ~/blink-project

Create the main Blink application source code file using your favorite text editor:

Host (Ubuntu)

vim blink.c

Edit the contents of the file to reflect the following and remember to save your changes when you are done!

blink.c

// This blink example was written for the phyCORE-i.MX8X Development Kit
// and toggles the D31 LED on the PCM-942.A2 Expansion Board. This LED is
// is connected to LSIO_GPIO0_IO28
//
// Authored by True (:

#include <sys/mman.h>
#include <fcntl.h>
#include <stdio.h>
#include <time.h>
#include <signal.h>

#define GPIO0_ADDR_START 0x5D080000
#define GPIO0_ADDR_END 0x5D08FFFF
#define GPIO0_SIZE (GPIO0_ADDR_END - GPIO0_ADDR_START)
#define GPIO0_PORT (1 << 28)
#define GPIO0_DATA_OFFSET 0x00000000
#define GPIO0_DIR_OFFSET 0x00000001

static volatile int keepRunning = 1;

void delay(unsigned long ms)
{
 clock_t start_ticks = clock();
 unsigned long millis_ticks = CLOCKS_PER_SEC / 1000;
 while (clock() - start_ticks < ms * millis_ticks){}
}

void intHandler(int dummy) {
 keepRunning = 0;
 printf("Blink Stopped\n");
}

int main()
{
 unsigned int *gpioAddress;
 unsigned int *gpio_setdataout_addr;
 unsigned int *gpio_direction_addr;

 signal(SIGINT, intHandler);

 int fd = open("/dev/mem", O_RDWR);

 gpioAddress =(unsigned int *) mmap(0, GPIO0_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, GPIO0_ADDR_START);

 gpio_setdataout_addr = gpioAddress + GPIO0_DATA_OFFSET;
 gpio_direction_addr = gpioAddress + GPIO0_DIR_OFFSET;

 *gpio_direction_addr |= GPIO0_PORT;
 while (keepRunning)
 {
 *gpio_setdataout_addr ^= GPIO0_PORT;
 delay(1000);
 }

 int err = munmap(gpioAddress, GPIO0_SIZE);
 if(err != 0){
 printf("UnMapping Failed\n");
 return 1;
 }
 return 0;
}

Cross-Compile the blink project:

Host (Ubuntu)

$CC -O blink.c -o blink

You should now see an executable of the name “blink” in the current working directory. Remember that this file was cross-compiled so it won’t work as expected if you try to execute it on your Ubuntu Host Machine. We can confirm the target architecture of the binary like this:

Example Output

user@ubuntu:~blink-project$ file blink
blink: ELF 64-bit LSB shared object, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, BuildID[sha1]=009f2310fb4646103486731e374b979bda901edb, for GNU/Linux 3.14.0, not stripped

Now, transfer the executable to the phyCORE-i.MX8X while it is booted into Linux. Check out the guide, Copying Files to the Device, for a bunch of options on how to do this. I recommend just quickly copying the “blink” file to a USB thumb drive to transfer files to the running target or, if you have time, setting up a network file sharing for long term development.

Once the file is transferred to the phyCORE-i.MX8X, navigate to the directory containing it using the target console and run the binary:

Target (Linux)

./blink

You should be able to quickly confirm that the User LED D31 is blinking.

To stop the Blink demo, hit Ctrl + C

BSP Development

This section of the developer wiki contains guides for common BSP development tasks. These common tasks relate to modifying the standard development kit’s software as well as modifying the BSP to add support for custom systems built around the phyCORE-i.MX8X SOM.

As for suggested workflow, most developers working with PHYTEC SOMs will want to start in one of these two ways:

	Generally, the best place to start is to Build the BSP in its entirety. Doing so will build the bootloader, kernel, rootfilesystem, and many utilities that make up the base Linux distro. Building the BSP gives you access to the source code for all of these components and can serve as a starting point for generating customized production software images.

	If you only need to modify the kernel, you can do so by following the Standalone Kernel Development guide in order to leverage a pre-built SDK to build and then modify your Linux kernel independently. This is much faster than building the BSP in its entirety (you can eventually just export your changes as patches that the BSP can then apply automatically when you are ready. This is covered in the Create a Custom Meta Layer guide).

	Build the BSP

	Modifying the BSP

	Create a Custom Meta Layer

	Standalone Kernel Development

Build the BSP

This guide will walk through setting up and building the BSP in order to generate default software images for the phyCORE-i.MX8X development kit. Once the BSP is built, it can serve as a starting point for which you can apply changes on-top to suit the needs of your application and system design.

Note

You do not need to build the BSP to begin evaluating the default phyCORE-i.MX8X development kit. Please start by working through the Quickstart if you just received your development kit.
You can also create a bootable SD Card using Pre-Built Binaries and evaluate the development kit’s standard peripherals by following the Interface Guides. You can also jump right into Application Development by working with a pre-built SDK.

Requirements

The following system requirements are necessary to successfully follow this BSP Development Guide. Deviations from these requirements may or may not have other workarounds:

	Ubuntu 18.04 LTS, 64-bit Host Machine with root permission

If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	200GB or greater free disk space

	8GB or greater of RAM

	4x processing cores or greater available to the Ubuntu Host Machine

	SD card reader operational under Linux

	Active Internet connection

Host Setup

Yocto development requires certain packages to be installed on the host machine to satisfy the build requirements. Run the following commands to ensure these are installed:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential chrpath socat cpio python python3 python3-pip python3-pexpect xz-utils libsdl1.2-dev curl vim libyaml-dev

The above is the recommended package installation for Yocto development on an Ubuntu 18.04 LTS Linux distribution, it also includes a couple recommended packages from PHYTEC. For a breakdown of the packages, as well as a list of packages required for other Linux distributions, see the “Required Packages for the Host Development System” section in the Yocto Project Reference Manual [https://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html].

Verify that the preferred shell for your Host PC is ‘’bash’’ and not ‘’dash’’:

Host (Ubuntu)

sudo dpkg-reconfigure dash
Respond "No" to the prompt asking "Install dash as /bin/sh?"

Install the ‘repo’ tool:

Host (Ubuntu)

mkdir -p ~/.bin
PATH="${HOME}/.bin:${PATH}"
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/.bin/repo
chmod a+rx ~/.bin/repo

Git

If you have not yet configured your git environment on the Host Machine, please execute the following commands to set your user name and email address:

Host (Ubuntu)

git config --global user.email "your@email.com"
git config --global user.name "Your Name"

Note

New to git? See here for more information about getting started with git: https://git-scm.com/

Setup and Build the BSP

Firstly, dedicate a directory on your Host Machine for housing the BSP and navigate there:

Host (Ubuntu)

mkdir ~/BSP-Yocto-FSL-i.MX8X-PD21.1.0
cd ~/BSP-Yocto-FSL-i.MX8X-PD21.1.0

Download the BSP Meta Layers

Note

	There was a significant change to the git protocol recently that impacts this BSP version’s manifest: https://github.blog/2021-09-01-improving-git-protocol-security-github/
	In order to successfully synchronize your host environment with the repositories called for in the BSP manifest, you will need to modify your git config in the following way:

Host (Ubuntu)

echo -e '[url "https://github.com/"]\n insteadOf = "git://github.com/"' >> ~/.gitconfig

Yocto based Linux BSPs are comprised of many meta-layers each containing recipes for fetching, building and packaging various components destined for the bootable software image. Some meta-layers are provided by the Linux community, such as meta-python for example. Other meta-layers are more platform specific and are made available by PHYTEC or the silicon vendor. All the meta-layers required by PHYTEC’s Linux BSP are outlined in a manifest file which we can give to the Repo Tool:

Host (Ubuntu)

repo init -u https://stash.phytec.com/scm/pub/manifests-phytec.git -b imx8x -m BSP-Yocto-FSL-i.MX8X-PD21.1.0.xml
repo sync

When the above process is completed, the meta-layers and the recipes they contain are all checked out to the ~/BSP-Yocto-FSL-i.MX8X-PD21.1.0/sources directory.

Initialize the BSP Environment

Source the build environment and setup a ‘build’ directory ($BUILDDIR will be automatically exported here and it will reflect the name of the ‘build’ directory that is provided):

Host (Ubuntu)

export TEMPLATECONF=`pwd`/sources/meta-phytec/meta-phytec-fsl/conf/
source sources/poky/oe-init-build-env build

The TEMPLATECONF variable is set first to specify the default build configuration files to be used by the build system. These configuration files include the conf/bblayers.conf and conf/local.conf from meta-phytec.

Note

You will need to ‘source’ the BSP build environment every time you intend to build the BSP in a new Terminal session.

Configure the Build

We’ll need to make some small changes to the build’s configuration file prior to kicking off the build. Open the build’s configuration file using your favorite text editor. This guide will use vim in order to modify the file directly in the terminal:

Host (Ubuntu)

vim conf/local.conf

Note

vim is perhaps the most popular command line text editor in Linux but it’s not the only way to modify text files. If you are new to vim, try out this interactive tutorial for vim to get an introduction: https://www.openvim.com/.

Modify conf/local.conf after considering the following:

	Note the MACHINE variable being set in the conf/local.conf. This variable is used to define the machine configuration the target image will be built for and it should equal ‘imx8x-phycore-kit’ by default.

	Once you have built a custom embedded system around the phyCORE-i.MX8X, you can consolidate your modifications to your own custom meta-layer and build images for that system via the MACHINE variable. Documentation on this process is coming soon!

	The variables BB_NUMBER_THREADS and PARALLEL_MAKE can be used to limit the maximum number of parallel tasks and threads used by the build system. By default, both of these are set to 4 and should not exceed the number of cores available to the Host Machine.

conf/local.conf

Parallelism options - based on cpu count
BB_NUMBER_THREADS ?= "4"
PARALLEL_MAKE ?= "-j 4"

	Read the file ~/BSP-Yocto-FSL-i.MX8X-PD21.1.0/sources/meta-imx/EULA.txt and add the following to the end of your conf/local.conf if you accept:

conf/local.conf

 ACCEPT_FSL_EULA = "1"

	Remember to save your changes before closing the file.

Start the Build

Use the following commands to navigate to the build directory (if you aren’t already there) and start the build process for the phyCORE-i.MX8X Linux BSP:

Host (Ubuntu)

cd $BUILDDIR
bitbake imx-image-multimedia

This command instructs the bitbake build system to run all the tasks associated with the imx-image-multimedia build target, which is the default image used by PHYTEC to validate the BSP-Yocto-FSL-i.MX8X-PD21.1.0 release.

Note

Depending on the resources available on the Host Machine, this build process can take a long time to complete the first time. Subsequent builds introducing incremental changes can be completed MUCH faster because the build system can intelligently re-build only what is necessary.

Ideally, the BSP is built on a dedicated build server with a high core/thread count.

Components of a Built BSP

All generated images deployed during the build can be found in the $BUILDDIR/tmp/deploy/images/imx8x-phycore-kit/ directory.

BSP Components

	Component

	Filename

	Details

	SD Image

	imx-image-multimedia-imx8x-phycore-kit.sdcard.bz2

	Complete SD Card image in compressed format, can be flashed directly to boot media.

	Bootloader

	imx-boot-imx8x-phycore-kit-sd.bin-flash

u-boot.bin

	Includes U-Boot, System Controller Firmware, SECO Firmware, and i.MX Arm Trusted Firmware

Standalone U-Boot binary; needs to be packaged with other binaries using NXP’s imx-mkimage tool to create complete bootloader image

	Kernel

	Image

	Linux Kernel

	Kernel Device Tree Files

	phytec-imx8qxp-phycore-rdk-emmc.dtb

phytec-imx8qxp-lvds0-peb-lvds-01.dtbo

phytec-imx8qxp-parallel-camera.dtbo

phytec-imx8qxp-uart2.dtbo

phytec-imx8qxp-wifi.dtbo

	Base Kernel DTB

DTB overlay for LCD-018 support

DTB overlay for phyCAM-P support

DTB overlay to enable UART2 and disable CAN

DTB overlay to enable WIFI

	Root Filesystem

	imx-image-multimedia-imx8x-phycore-kit.tar.bz2

	Filesystem in compressed tar format

With these output files generated, checkout the Create a Bootable SD Card guide to use them to boot the hardware.

Source Locations

During the build process, the source repositories for various image components included in the BSP are unpacked locally in the build directory. The kernel and bootloader sources, for example, can be found at the following locations in the built PD21.1.0 Linux BSP.

Kernel: $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/linux-phytec-fsl/5.4.24-r0/git

	The main device tree file for the phyCORE-i.MX8X development kit within the Linux kernel source: arch/arm64/boot/dts/phytec/phytec-imx8qxp-phycore-rdk-emmc.dts and its dependencies

	Device tree overlays can be found in the same directory: arch/arm64/boot/dts/phytec/phytec-imx8qxp-<interface>.dtso

	The phyCORE-i.MX8X kernel defconfig can be found at: arch/arm64/configs/imx8x_phycore_kit_defconfig

U-Boot: $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/u-boot-phytec/1_2020.04-2.1.0/git

	Board file is located at: board/phytec/pcm065/pcm065.c

	Device tree file: arch/arm/dts/phytec-imx8qxp-kit.dts

	Device tree overlays: arch/arm/dts/phytec-imx8qxp-<interface>.dtso

Building the SDK Installer

Once you have successfully followed the steps outlined above for building the BSP, you can similarly build the SDK installer.

Warning

There is a known issue related to running the populate_sdk task for the imx-image-multimedia target in BSP PD21.1.0 and you must implement the following workaround in order to successfully build the SDK installer:

Add the following line to the end of your conf/local.conf when building the SDK installer:

conf/local.conf

PACKAGE_EXCLUDE += "linux-firmware"

This line can be commented when building images otherwise. Adding this line to the local build configuration will cause the build system to exclude some firmware packages that are not needed for full operation of the development kit interfaces. Otherwise, the populate_sdk task will fail due to some conflicts that were overlooked at the time of release. This issue is planned to be fixed in a future release.

Build the SDK installer:

Host (Ubuntu)

cd $BUILDDIR
bitbake imx-image-multimedia -c populate_sdk

The SDK installer will be deployed to $BUILDDIR/tmp/deploy/sdk

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]

Modifying the BSP

There can be a significant learning curve to working with The Yocto Project and this guide will serve as a resource for developers to quickly test changes to the BSP. After working through this guide, you should be able to comfortably navigate the BSP and manually introduce custom modifications on-top of it in order to evaluate the interfaces and functionality required by your custom application.

Note

In order to follow this guide, you must have first built the BSP in its entirety and have your BSP environment initialized. Checkout the Build the BSP guide if you haven’t yet!

The built BSP has two primary directories at its root and these are the /sources and /build directories. These two directories are significant and here is a summary of why (the paths here may be slightly different for you if you deviated from the instructions):

	~/BSP-Yocto-FSL-i.MX8X-PD21.1.0/sources - This directory contains meta-layers. Meta-layers are repositories that contain instructions for fetching, building and deploying certain software packages. Layers can also contain instructions for changing recipes and settings introduced by other layers. This powerful override capability is what allows you to customize the supplied meta-phytec or community layers to suit your product requirements. The instructions included in meta-layers are typically referred to as recipes.

	~/BSP-Yocto-FSL-i.MX8X-PD21.1.0/build - This directory is used by the build system during the build process and is generally referred to as $BUILDDIR in the documentation. Packages called for by the build target, as defined by their recipes are fetched, unpacked, compiled and staged for deployment here.

Note

It is important to distinguish between modifying the local sources of a particular package and modifying the recipe for a given package!

If you are new to working with The Yocto Project, then the Yocto Project Overview and Concepts Manual [https://www.yoctoproject.org/docs/3.0/overview-manual/overview-manual.html] will be a good document to read through to get a high level understanding of what is going on. The Yocto Project Reference Manual [https://www.yoctoproject.org/docs/3.0/ref-manual/ref-manual.html] is the best resource for in-depth documentation regarding directory structure, recipes, tasks, and other aspects of actually working with the BSP’s build system.

Adding Packages to the BSP

Note

The packages included by default in the imx-image-multimedia build target should allow you to do most of your development directly on the target if you wanted to (short of modifying the kernel to accommodate custom hardware).

The best way to quickly check what packages are available on the target image is to check the image manifest, which is a file that is deployed along with the imx-image-multimedia build target. Use the following to open this file:

Host (Ubuntu)

vim $BUILDDIR/tmp/deploy/images/imx8x-phycore-kit/imx-image-multimedia-imx8x-phycore-kit.manifest

If there is a package that you need that wasn’t included in the target image by default, then you should first check if the package was included in the build tree.

Host (Ubuntu)

cd $BUILDDIR

#lists all available packages
bitbake -s

#search for specific packages by name
bitbake -s | grep <package name>

If the package you need is listed then you can add the package to the image by simply adding the following line to the end of your build’s conf/local.conf file:

conf/local.conf

IMAGE_INSTALL_append = " <package name1> <package name2>"

Adding these packages to the target image by way of the conf/local.conf file is some what of a temporary way to introduce packages and you will eventually add these in a more permanent way in your custom meta layer.

Warning

The IMAGE_INSTALL_append variable can hold a space separated list of packages you wish to add to the default BSP. Note that the leading space in the list is necessary!

If the package you need is not listed, then this means that either PHYTEC or the silicon vendor (NXP in the case of the phyCORE-i.MX8X) did not support the meta-layer needed for that package by default. If this is the case, you may need to find a community layer which introduces the recipe/package you need. Community layers can be searched on the Open Embedded Layer Index [https://layers.openembedded.org/layerindex/branch/zeus/layers/], just make sure you are searching the correct Yocto version for your BSP, PD21.1.0 uses Yocto v3.0, Zeus.

Note

Adding meta-layers to the BSP that aren’t included in the build tree by default is discussed in the Create a Custom Meta Layer guide.

Modify the Kernel Config

The BSP’s build system also includes kernel development tasks for interacting with the Linux kernel’s own menuconfig tool, which is a graphical tool for configuring the driver support included in the kernel.

Launch the menuconfig tool with the following command:

Host (Ubuntu)

bitbake linux-phytec-fsl -c menuconfig

Once menuconfig launches, you can navigate the available configuration options using the arrow keys on your keyboard to enable or disable support as required. We’ll walk through an example:

First, navigate to Device Drivers → Sound card support.

[image: ../_images/pcm-065_modifybsp-soundcard.png]
Sound card support is enabled by default and for this example we will disable it. To do this, toggle the Sound card support off using the space bar.

[image: ../_images/pcm-065_modifybsp-soundcard-closeup.png]
Remember to save your new configuration to the .config file before exiting menuconfig.

The .config used by the build system can be found at $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/linux-phytec-fsl/5.4.24-r0/build/.config and you could back this up to a safe location outside of the BSP to eventually define your defconfig in your custom meta layer like so:

Host (Ubuntu)

cp $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/linux-phytec-fsl/5.4.24-r0/build/.config ~

Tip

Files that start with a ‘.’ are typically hidden in the filesystem. If you are having trouble seeing the .config file then try the following command to list everything (including hidden files) in the directory you are searching:

Host (Ubuntu)

ls -a <path to .config>

Feel free to open the .config file with a text editor to verify that your change made it there. You’ll notice that the previous and original .config files are also backed up, which you could diff against to see what has changed.

Once you have saved your changes to the .config, you can force a re-compile of just kernel to make those changes take a effect:

Host (Ubuntu)

cd $BUILDDIR
bitbake linux-phytec-fsl -c compile --force

The do_deploy task follows the do_compile task. In order for the change to also make its way into the binaries generated in the deployment directory, you now need to re-deploy the kernel independently or as part of the overall target image.

Host (Ubuntu)

bitbake linux-phytec-fsl

or

bitbake imx-image-multimedia

Modify the BSP’s Kernel Source Directly

Once the BSP is built the first time, you will have access to deployed binaries as well as the local sources that were used to build them. It is possible to make changes to these local sources and re-compile them directly in the BSP. This guide will use the linux-phytec-fsl package as an example but the information outlined here will be applicable to other packages such as the bootloader and others too.

Warning

The Yocto Project isn’t really intended for serious development of the individual packages called for by the recipes in the BSP’s meta-layers, it’s really meant to generate production-ready images. If you are considering significant modifications to the Linux kernel (perhaps you need to port an upstream driver), you are better off cloning the kernel repo independently outside the scope of the BSP to focus on that development alone first. Once major changes for a package are finalized, a new recipe can be created that extends the existing kernel recipe in the BSP and just applies your changes as a set of patches to the base package. Checkout the Standalone Kernel Development guide for more information on this.

Changes made directly to the local sources of a package should not be considered permanent, they can be easily destroyed if the package is cleaned and re-fetched by the build system.

The goal of this guide is to provide you with a way to perform quick and informal changes to the kernel or other packages for testing on the phyCORE-i.MX8X development kit. This is handy if you need to quickly enable a driver or GPIO instance, for example.

This section of the guide won’t focus on applying changes to the BSP components in the “correct way” by use of a custom meta-layer. For instructions on that process, checkout the Create a Custom Meta Layer guide when you are ready to begin consolidating all your changes to the stock BSP.

Change the Linux Kernel Device Tree

Let’s try making a small change to the kernel’s device tree and enable a heartbeat LED using the User LED D31 to let us know that the system is alive automatically upon boot (this User LED doesn’t do anything by default, checkout the GPIO guide to learn more about it):

[image: ../_images/pcm-065_blink-user-led.png]
Use your favorite text editor to open the main device tree file for the phyCORE-i.MX8X development kit:

Host (Ubuntu)

vim $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/linux-phytec-fsl/5.4.24-r0/git/arch/arm64/boot/dts/phytec/phytec-imx8qxp-phycore-rdk-emmc.dts

Add the following device tree code to the end of the file. This code both re-muxes the processor pin connected to the D31 User LED as a GPIO and ties the leds-gpio.c driver to the pin to give us the heartbeat functionality:

phytec-imx8qxp-phycore-rdk-emmc.dts

/ {
 leds {
 compatible = "gpio-leds";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_leds>;

 user-led1 {
 label = "green:user1";
 gpios = <&lsio_gpio0 28 GPIO_ACTIVE_HIGH>;
 linux,default-trigger = "heartbeat";
 };
 };

};

&iomuxc {
 pcm942 {
 pinctrl_hog: hoggrp {
 fsl,pins = <
 IMX8QXP_SAI1_RXC_LSIO_GPIO0_IO30 0x06000021 /* USBOTG1 Port Select */
 IMX8QXP_MCLK_OUT0_ADMA_ACM_MCLK_OUT0 0x0600004c /* Audio Clock*/
 IMX8QXP_SAI1_RXFS_LSIO_GPIO0_IO31 0x06000021 /* CAN Fault */
 IMX8QXP_SPI0_CS1_LSIO_GPIO1_IO07 0x06000021 /* ETH1 OR Gate */
 >;
 };

 pinctrl_leds: ledsgrp {
 fsl,pins = <
 IMX8QXP_SAI0_TXFS_LSIO_GPIO0_IO28 0x00000021 /* User LED */
 >;
 };
 };
};

Remember to save your changes!

Warning

Running the clean task at this point for either the linux-phytec-fsl target itself or the overall target image will destroy the changes. The clean task instructs the build system to delete the unpacked sources for a given target which would also destroy the changes made there.

Force the Change to Get Compiled
When testing changes applied directly to the build’s local sources (in $BUILDDIR), the build system will not automatically detect that the local source has changed unless you specifically instruct the build system to recompile it first. This means that you can’t just modify the kernel source at $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/linux-phytec-fsl/5.4.24-r0/git and expect the build system to automatically take the change into account the next time ‘bitbake imx-image-multimedia’ is run.

The following command should be used after applying some change directly to the local kernel source in the $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/linux-phytec-fsl/5.4.24-r0/git, such as we did above when we added the code to enable the heartbeat LED:

Host (Ubuntu)

cd $BUILDDIR
bitbake linux-phytec-fsl -c compile --force

Once the kernel is forcefully recompiled, you can re-deploy it independently or as part of the overall target image:

Host (Ubuntu)

bitbake linux-phytec-fsl

or

bitbake imx-image-multimedia

Using the newly deployed image to boot the phyCORE-i.MX8X development kit should quickly confirm that the User LED D31 is blinking and that the kernel modification was successfully applied.

Save the Change

Keep in mind that manual changes applied directly to the sources in $BUILDDIR are temporary since they aren’t being tracked by the build system yet. For this section of the guide, we will assume you made some kernel change (such as heartbeat LED change demonstrated above) and that you are satisfied enough with the change that you would like it to apply automatically to the BSP whenever it is built.

The first thing to do is to export the change as a patch file. To do this, navigate to the package repository you modified:

Host (Ubuntu)

cd $BUILDDIR/tmp/work/imx8x_phycore_kit-poky-linux/linux-phytec-fsl/5.4.24-r0/git

Before actually creating the patch, you may want to review the changes made to the repository to ensure everything is as you expect it. Use git to do this:

Host (Ubuntu)

git diff
git status

Export a patch file based on the current changes applied on-top of the base kernel and save it to a safe location outside the BSP, perhaps your home directory:

Host (Ubuntu)

git diff > heartbeatD31.patch && cp heartbeatD31.patch ~

Patch files work best when they capture changes that are very specific in their purpose. For example, instead of having one “mega” patch that enables all the unique features of your custom system, break up your customizations such that each patch is responsible for a specific interface or driver. This will make maintaining your meta-layer much easier later on.

Note

Eventually, you will have a set of patches that modify the functionality of the phyCORE-i.MX8X SOM in a way that is specific to your application requirements and the design of your custom carrier board (if applicable). This collection of patches should eventually be consolidated into a custom Meta-Layer specific to your system and added in a modular way to the BSP. Checkout the Create a Custom Meta Layer guide when you are ready to begin finalizing your production image.

Clean Packages

When testing changes, it will be necessary to get back to a known working-starting point at some time or another. To do this, all recipes have a do_clean task defined that instructs the build system to delete all the unpacked sources for a given target (including the changes manually applied there). The next time the same package is built, it will be re-unpacked from the cached source tarball which effectively reverts your changes back to their original BSP defaults.

Clean the package:

Host (Ubuntu)

bitbake linux-phytec-fsl -c clean

Create a Custom Meta Layer

At some point during application development it will become advantageous to consolidate the changes you made to the stock BSP into a meta layer in order to have them applied automatically by the build system. This makes it easier to reproduce the production image in new build environments and also allows you to version control your changes to the BSP, since meta layers are themselves repositories. As PHYTEC comes out with new BSP releases over time to improve our products, having your changes all in one meta layer also makes it easier to upgrade to the latest BSP and kernel when your development allows.

Note

In order to follow this guide, you must have first built the BSP in its entirety and have your BSP environment initialized. Checkout the Build the BSP guide if you haven’t yet!

bitbake-layers Tool

The easiest way to introduce new meta layers to the build system is by leveraging the ‘bitbake-layers’ tool in the poky distribution of The Yocto Project:

Example Output

phytec@phytec-virtual-machine:~/BSP-Yocto-FSL-i.MX8X-PD21.1.0/build$ bitbake-layers -h
NOTE: Starting bitbake server...
usage: bitbake-layers [-d] [-q] [-F] [--color COLOR] [-h] <subcommand> ...

BitBake layers utility

optional arguments:
 -d, --debug Enable debug output
 -q, --quiet Print only errors
 -F, --force Force add without recipe parse verification
 --color COLOR Colorize output (where COLOR is auto, always, never)
 -h, --help show this help message and exit

subcommands:
 <subcommand>
 show-layers show current configured layers.
 show-overlayed list overlayed recipes (where the same recipe exists
 in another layer)
 show-recipes list available recipes, showing the layer they are
 provided by
 show-appends list bbappend files and recipe files they apply to
 show-cross-depends Show dependencies between recipes that cross layer
 boundaries.
 layerindex-fetch Fetches a layer from a layer index along with its
 dependent layers, and adds them to conf/bblayers.conf.
 layerindex-show-depends
 Find layer dependencies from layer index.
 add-layer Add one or more layers to bblayers.conf.
 remove-layer Remove one or more layers from bblayers.conf.
 flatten flatten layer configuration into a separate output
 directory.
 create-layer Create a basic layer

Use bitbake-layers <subcommand> --help to get help on a specific command

Check Existing Layers

Before creating a new layer, you should be sure someone in the Yocto community hasn’t already created a layer containing the metadata you need. You can see the OpenEmbedded Metadata Index [http://layers.openembedded.org/layerindex/branch/zeus/layers/] for a list of layers from the OpenEmbedded community that can be used in the Yocto Project.

Note

Not all community layers are going to be compatible with the phyCORE-i.MX8X, the i.MX8X soc, or the Linux BSP PD21.1.0.

If you are familiar with Yocto and have used the workflow for a previous project, perhaps you already have a meta layer setup. In either case, you should find the repo URL of the meta layer and clone it locally to your Host Machine:

Host (Ubuntu)

cd ~
git clone <meta layer URL>

You’ll also want to ensure that the appropriate branch of the layer is checked out, if applicable.

Note

This guide we will work through an example by creating a meta-custom layer but the commands here should still serve as a reference for when working with existing meta layers you manually cloned to the local file system.

Create a Layer

Use the following command to create a new meta layer from scratch, named ‘meta-custom’:

Host (Ubuntu)

cd $BUILDDIR
bitbake-layers create-layer meta-custom

Note

It is not a requirement that a layer name begin with the prefix ‘meta-’, but it is a commonly accepted standard in the Yocto Project community.

This command sets up a meta-custom layer directory and automatically populates it with examples a configuration and recipe for an example, in the current working directory.

Add Layers

Now that you have a meta layer (perhaps you manually cloned an existing layer), we can add it to the build system:

Host (Ubuntu)

bitbake-layers add-layer meta-custom

You have officially added a custom meta layer to the BSP! Congratulations! At this point, the best resource for further customizing this meta layer according to the specific needs of your project is to work through The Yocto Project Development Tasks Manual [https://www.yoctoproject.org/docs/3.0/dev-manual/dev-manual.html] and The Yocto Project Board Support Package Developer’s Guide [https://www.yoctoproject.org/docs/3.0/bsp-guide/bsp-guide.html]. We know that its a lot of manuals!

Tip

Remember, you can always ask questions in the PHYTEC’s Support Portal [http://support.phytec.com/]! We want your projects to succeed!

Extend a RecipeLink to Extend a Recipe

As an exercise, we will extend the default kernel recipe and add the heartbeat LED modification we did in the Modify the BSP guide so that it can be automatically applied when the BSP is built. In order to follow this section of the guide you will need that patch file we generated so you can either create it yourself or download it in the steps below.

First, lets navigate into the meta-custom layer we created above:

Host (Ubuntu)

cd meta-custom

Note

A handy command to view the structure of a directory is ‘tree’, install it with the following command:

Host (Ubuntu)

sudo apt-get install tree

Once ‘tree’ is installed, use it to view the directory recursively!

Example Output

 phytec@phytec-virtual-machine:~/BSP-Yocto-FSL-i.MX8X-PD21.1.0/build/meta-custom$ tree
 .
 ├── conf
 │ └── layer.conf
 ├── COPYING.MIT
 ├── README
 └── recipes-example
 └── example
 └── example_0.1.bb

 3 directories, 4 files

Linux Kernel recipes by convention should reside in recipes-kernel/linux so we need to change some directories to conform to this convention:

Host (Ubuntu)

mv recipes-example/ recipes-kernel
mv recipes-kernel/example/ recipes-kernel/linux

We also need to change the example recipe to a recipe extension, so that it is applied on-top of an existing recipe. Since we know that the active kernel recipe in the phyCORE-i.MX8X PD21.1.0 BSP is linux-phytec-fsl_5.4.24.bb, we can extend it by changing the example recipe like so:

Host (Ubuntu)

mv recipes-kernel/linux/example_0.1.bb recipes-kernel/linux/linux-phytec-fsl_5.4.24.bbappend

Now the build system will know that this recipe needs to be applied to the .bb file of the same name.

Open the .bbappend file using your favorite text editor:

Host (Ubuntu)

vim recipes-kernel/linux/linux-phytec-fsl_5.4.24.bbappend

Modify the contents of the .bbappend file to reflect the following:

recipes-kernel/linux/linux-phytec-fsl_5.4.24.bbappend

COMPATIBLE_MACHINE = "imx8x-phycore-kit"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-customPatches:"

SRC_URI += " file://heartbeatD31.patch"

In the bbappend file, we are instructing to the build system that this recipe extension is compatible with our target MACHINE configuration, the phyCORE-i.MX8X development kit, and it adds to some key variables the build system uses when processing a package. FILESEXTRAPATHS is the search path the build system uses when looking for files and patches as it processes recipes and append files. SRC_URI lists the actual names of files we want grabbed out of these locations, and in the case of patch files, they will all be automatically applied during the do_compile task.

As the .bbappend suggests, we also need to add our patch file the meta layer. Feel free to download it here if you need it (heartbeatD31.patch [https://develop.phytec.com/phycore-imx8x/files/latest/11142106/11142140/1/1615501214093/heartbeatD31.patch]), this guide will assume you backed it up to the home directory as instructed in the :ref: modifyBSP-8X guide.

Create the directory called for in the .bbappend file and copy the patch there:

Host (Ubuntu)

mkdir recipes-kernel/linux/linux-phytec-fsl-customPatches
cp ~/heartbeatD31.patch recipes-kernel/linux/linux-phytec-fsl-customPatches

Now your patch should get automatically applied every time the kernel is built.

Clean and rebuild the kernel, and then also rebuild the overall target image to update all the files in your deployment directory:

Host (Ubuntu)

bitbake linux-phytec-fsl -c clean && bitbake linux-phytec-fsl && bitbake imx-image-multimedia

Standalone Kernel Development

Building the BSP in its entirety has a fairly large learning curve and significantly larger system requirements on the Host Machine when compared to building just the individual components of the image. For these reasons (and others), the Yocto Project can be very cumbersome to use as your primary means of developing things like the Linux kernel. When possible, it is best to clone the kernel repo independently of the overall BSP in order to customize it for your application requirements.

The goal of this guide is to provide you with a quick reference for setting up and building the stock PD21.1.0 kernel independently, without The Yocto Project. This can then serve as a starting point for kernel development.

Note

Eventually, you will have a set of patches that modify the Linux kernel such that phyCORE-i.MX8X SOM is able to meet your unique application requirements. This collection of patches should eventually be consolidated into a custom Meta-Layer specific to your system and added in a modular way to the BSP so that they are incorporated into the production-ready software image automatically. Checkout the Create a Custom Meta Layer guide when you are ready to begin finalizing your production image.

Requirements

In order to build the kernel repository independently of the overall BSP, you will need to install a compatible toolchain for the phyCORE-i.MX8X.

	A toolchain is conveniently included in the pre-built SDK so head over to the Install the SDK guide and run through those steps first if you haven’t already done so.

	Remember to source the cross-compilation environment if you previously installed the SDK but are using a new terminal session.

Clone the Linux kernel

Clone the PHYTEC kernel repository using the release tag corresponding to the BSP PD21.1.0:

Host (Ubuntu)

cd ~
git clone https://stash.phytec.com/scm/pub/linux-phytec-fsl.git --branch BSP-Yocto-FSL-i.MX8X-PD21.1.0

Make

The kernel build system leverages various environment variables and makefiles to build the kernel and it’s components for a specific target architecture. Reference the following commands when building for the phyCORE-i.MX8X:

Host (Ubuntu)

make imx8x_phycore_kit_defconfig #configure the kernel build system to use PHYTEC's provided kernel configuration for the default pyCORe-i.MX8X development kit

make menuconfig #make kernel configuration changes (enable/disable drivers)

make savedefconfig #save the kernel configuration from .config to a file named "defconfig"

make #build everything (Image, DTB, kernel modules, etc):

sudo make INSTALL_MOD_PATH=/media/user/root/ modules_install #install kernel modules to the mounted bootable SD Card

The new Image kernel binary can be found at arch/arm64/boot/Image and the device tree blobs (and overlays) can be found at arch/arm64/boot/dts/phytec/.

For installing the new kernel image and device tree files, head over to the create a bootable SD Card guide.

3rd Party Integration

This section of the product wiki contains guides for integration of tools which are not part of our default BSP and might be added later.

	Eclipse IDE Setup

Eclipse IDE Setup

This guide will walkthrough the setup of the Eclipse IDE to cross-develop applications for the phyCORE-i.MX8X development kit.

In order to follow this guide, you must have a valid BSP PD21.1.0 SDK installed. Steps for installing the SDK can be found in the Install the SDK guide.

Install Eclipse

To install the Eclipse IDE, run the following command:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install eclipse

Launch Eclipse once it is installed:

Host (Ubuntu)

./eclipse

You will be greeted with a window to setup your workspace. The workspace directory will house your development, feel free to create this anywhere you would like but this guide will use the default location as suggested by eclipse so just press OK.

[image: ../_images/pcm-065_eclipse-setup-1.png]
The first time you open the Eclipse IDE, you will also be presented with a Welcome screen. Go ahead and close this:

[image: ../_images/pcm-065_eclipse-setup-2.png]

Adding Eclipse Plug-ins

We need to configure this workspace before creating a new project for our phyCORE-i.MX8X. Navigate to Help → Install New Software:

[image: ../_images/pcm-065_eclipse-setup-3.png]
In the Install window that appears, select Add…:

[image: ../_images/pcm-065_eclipse-setup-4.png]
Another window should have popped up for adding a repository.

[image: ../_images/pcm-065_eclipse-setup-5.png]

C/C++ Plug-ins

In the Location field, enter the following URL before selecting Add: http://download.eclipse.org/releases/luna

The Install window should now show a couple of plug-in options available for installation. Locate and check-mark the following:

	Mobile and Device Development → C/C++ GCC Cross Compiler Support

	Programming Languages → C/C++ Autotools Support

	Programming Languages → C/C++ Development Tools

Select Next and work through installation of the C/C++ Plug-ins. Once the installation is complete, restart Eclipse.

Tip

You can restart Eclipse manually at anytime by navigating to File → Restart.

Once Eclipse has restarted, let’s grab some more Plug-ins from another location. Navigate to Help → Install New Software.

Add another repository using this URL in the location field this time: http://downloads.yoctoproject.org/releases/eclipse-plugin/1.8/juno/

The Install window should now show some new plug-in options available for installation. Press the Select All button as we are going to install of these plug-ins.

[image: ../_images/pcm-065_eclipse-setup-6.png]
Select Next and work through installation of the Yocto Plug-ins. Once the installation is complete, restart Eclipse.

Configuring the Yocto Plug-in

With the plug-ins installed we now need to further configure the Yocto Plug-in to leverage the phyCORE-i.MX8X Linux BSP PD21.1.0 SDK, which contains both the toolchain and sysroots directory that Eclipse is going to use to cross-compile projects.

Navigate to Window → Preferences:

[image: ../_images/pcm-065_eclipse-setup-7.png]
In the Preferences window, in the left side panel, select Yocto Project ADT:

[image: ../_images/pcm-065_eclipse-setup-8.png]
Fill out the fields in the Yocto Project ADT window with the following values:

	Cross Compiler Options: Select “Standalone pre-built toolchain”

	Toolchain Root Location: Enter “/opt/fsl-imx-xwayland/5.4-zeus”

	Sysroots Location: Enter “/opt/fsl-imx-xwayland/5.4-zeus/sysroots”

Note

The toolchain and sysroots locations could be in another location if you did not install the SDK to the default location as suggested by the installer. These fields should reflect wherever you installed the SDK.
If you haven’t yet installed the SDK, checkout the Install the SDK guide.

Click Apply and then OK.

[image: ../_images/pcm-065_eclipse-setup-9.png]
Your Eclipse IDE should now automatically source the cross-compilation toolchain upon start up.

Creating and Configuring a New C Project

This section of the guide will setup and build a template Hello World application as a reference for those beginning development on the phyCORE-i.MX8X.

During cross-platform development, one of the biggest consumers of time can be transferring binaries back and forth between your development machine and the phyCORE-i.MX8X target. In an effort to aide in long term development, we will also be adding a post-build step to transfer the binary to the development kit and execute it automatically from within the Eclipse IDE.

Note

In order to complete this guide, the phyCORE-i.MX8X must be connected to your local area network and you must know its IPv4 address. Checkout the Ethernet interface guide for more information about this.

Create the Project

Navigate to File → New → Project:

[image: ../_images/pcm-065_eclipse-setup-10.jpg]
In the New Project window, navigate to C/C++ → C Project:

[image: ../_images/pcm-065_eclipse-setup-11.jpg]
In the C Project window, name the project HelloWorld

	For the Project Type, select the Executable → Hello World ANSI C Project

	For the Toolchain, select Linux GCC

[image: ../_images/pcm-065_eclipse-setup-12.jpg]
You should now be able to navigate the project in the C/C++ Projects pane on the left.

[image: ../_images/pcm-065_eclipse-setup-13.jpg]

Configure the Project Properties

Now with the project created, we need to configure the project to leverage the cross-compilation toolchain Eclipse already has sourced.

Right click the Project in the C/C++ Projects pane on the left and select Properties

[image: ../_images/pcm-065_eclipse-setup-14.jpg]
In the Properties window, navigate to C/C++ Build → Settings

[image: ../_images/pcm-065_eclipse-setup-15.jpg]
In the Tool Settings pane, select GCC C Compiler and replace the Command field with: ${CC}

[image: ../_images/pcm-065_eclipse-setup-16.jpg]
In the Tool Settings pane, select GCC C Linker and replace the Command field with: ${CC}

Also, add ${LDFLAGS} between ${COMMAND} and ${FLAGS} in the “Command line pattern:” field.

[image: ../_images/pcm-065_eclipse-setup-17.jpg]
In the Tool Settings pane, select GCC C Assembler and replace the Command field with: ${AS}

[image: ../_images/pcm-065_eclipse-setup-18.jpg]
Select the Build Steps tab next to the Tool Settings tab:

[image: ../_images/pcm-065_eclipse-setup-19.jpg]
In the Post-built steps Command field, enter the following line (replace the X’s with the IPv4 address of your phyCORE-i.MX8X):

Post-build Command

scp ./HelloWorld root@XX.XX.XX.XX:~; ssh root@XX.XX.XX.XX ./HelloWorld

This command is run automatically at the end of the build by Eclipse and it will transfer the output binary for the project to the phyCORE-i.MX8X and execute it there.

[image: ../_images/pcm-065_eclipse-setup-20.jpg]
Select the Build Artifacts tab next to the Build Steps tab:

[image: ../_images/pcm-065_eclipse-setup-21.jpg]
Clear the Output prefix field. This field should have no value when compiling executables.

[image: ../_images/pcm-065_eclipse-setup-22.jpg]
Select Apply and OK.

Build the Project

Now that the project is configured, it is ready to be built. To build the project, select the little Hammer icon in the toolbar.

[image: ../_images/pcm-065_eclipse-setup-23.jpg]
With that, the project should build and Eclipse should automatically process the post-build step. You should see confirmation of the successful build in the IDE console and the “Hello World” message being echoed there from the phyCORE-i.MX8X over the network.

[image: ../_images/pcm-065_eclipse-setup-24.jpg]

Tip

If your build gets stuck and never seems to complete, try canceling the build and removing the post-built step to see if this was the issue. You might need to double check that you can manually SSH into the phyCORE-i.MX8X first to ensure that there are no underlying network issues with this. Steps for manually SSHing into the phyCORE-i.MX8X can be found in the Ethernet interface guide.

Pre-Built Binaries

Note

It is best to download these files directly to your Ubuntu Host Machine since the files available on this page are typically destined for flash devices such as SD Cards.

If your Ubuntu Machine is being hosted as a Virtual Machine, try the following to download the files (your browser is probably in your native environment so clicking the links below might not work):

	Right click the desired Pre-Built binary file below and Select “Copy link address”:

[image: ../_images/pcm-065-download-prebuilt-bin-note.jpg]

	Use the copied URL and the following command in your Ubuntu Host Machine to download the file to the working directory:

Host (Ubuntu)

wget <URL>

You should be able to copy and paste the URL between your Virtual Machine and your native system environment but it might require enabling a setting. Consult the documentation for your Virtual Machine software for more information.

Download Link for Pre-Built Image

Download the complete SD Card Image [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/imx-image-multimedia-imx8x-phycore-kit.rootfs.wic.bz2]

Download Links for Pre-Built Image Components

Download the Bootloader (U-Boot and SCFW) [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/imx-boot-imx8x-phycore-kit-sd.bin-flash]

Download the Kernel Image [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/Image]

Download the Kernel dtb [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/phytec-imx8qxp-phycore-rdk-emmc.dtb]

Download the Kernel dtb LVDS0 overlay [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/phytec-imx8qxp-lvds0-peb-lvds-01.dtbo]

Download the Kernel dtb LVDS1 overlay [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/phytec-imx8qxp-lvds1-peb-lvds-01.dtbo]

Download the Kernel dtb Parallel Camera overlay [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/phytec-imx8qxp-parallel-camera.dtbo]

Download the Kernel dtb UART2 overlay [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/phytec-imx8qxp-uart2.dtbo]

Download the Kernel dtb WIFI overlay [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/phytec-imx8qxp-wifi.dtbo]

Download the Root Filesystem [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/imx-image-multimedia-imx8x-phycore-kit.tar.bz2]

Download Link for the SDK Installer

Download the SDK Installer Script [https://artifactory.phytec.com/artifactory/imx8x-images-released-public/BSP-Yocto-FSL-i.MX8X-PD21.1.0/fsl-imx-xwayland-glibc-x86_64-imx-image-multimedia-aarch64-imx8x-phycore-kit-toolchain-5.4-zeus.sh]

Relevant Guides

	SD Card

	eMMC

Index

 _static/minus.png

_static/plus.png

_images/pcm-065_bt-callout.png
Switch 7

Switch $10 WiFi Module U107

_images/pcm-065_can-pcan-setup.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.
More info

_images/pcm-065_audio_profile__callout.png
Headphone

Microphone

_images/pcm-065_blink-user-led.png

_images/pcm-065_can-receive.png
Di(he) Length: Dsts (hex)

o0 & <] [oe][ao] [e€] [
CRERERE]
Message Type
[Extended Frar
[Paused [Remote Request

Cycle Time:
o

o
>
(]
S
@

4

a

Comment:

Transmit

d to hardware PCAN-USB @ | Bit rate: 1 MBit QXmtFul

_images/pcm-065_can-send.png
B Pean-vie

File CAN Edit Tansmit View Trace Window Help

FPEHPEe: X0 O

Length
i DE AD BE EF CAFE BABE

Receive

a

Length Data CycleTime Count Trigger
i DE AD BE EF CAFE BABE Wait o

Transmit

hardware B o | Bit rate: 1 MBit/s | Status: Overruns: 0 | QXmtFull

Comment

_images/pcm-065_can-pcan-setup2.png
Windows protected your PC .

Microsoft Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.

App: PeanViewere
Publisher: PEAK-System Technik GmbH

_images/pcm-065_can-pcan-setup3.png
& Connect

= PCAN-View

Available PCAN hardware:

% PCAN-USE: Device ID FFh

CANFD

ClockFrequency: Bitrate: Bus Timing Register:
M e <] [ootan >
Fiter settings

Ostandard ¢[00 (He) To: [7FF (He)

O Extended

[Listen-only mode oK. Cancel @ Hep

_images/pcm-065_can_callout.png

_images/pcm-065_configswitch-close-up.png
>A
8
&
o
5}
- Q
:

_static/file.png

_images/pcm-065_configswitch.png
Status LEDs Configuration Switches

nav.xhtml

 Table of Contents

 		
 phyCORE-i.MX8X

 		
 Release Notes

 		
 New in this Release

 		
 Software Versioning

 		
 PHYTEC Meta Layer

 		
 Part Number Summary

 		
 Linux Device Tree Summary

 		
 Supported Interfaces

 		
 Quickstart

 		
 Basic Evaluation Requirements

 		
 Check the Board Configuration

 		
 SD Boot Settings

 		
 Serial Communication Setup

 		
 Power the Board

 		
 Safe Shutdown

 		
 Interface Guides

 		
 ADC

 		
 Audio

 		
 Requirements

 		
 Playing Audio

 		
 Capturing Sound

 		
 Adjusting Playback and Capture Settings

 		
 Bluetooth

 		
 Requirements

 		
 Setting Up Hardware

 		
 Connecting A Bluetooth Device

 		
 CAN

 		
 Requirements

 		
 Setting Up Hardware

 		
 Setting Up Host PC with PCAN-View

 		
 Setting the Bitrate

 		
 Sending CAN Messages

 		
 Receiving CAN Messages

 		
 Configuration Switches

 		
 Display (LVDS)

 		
 Requirements

 		
 Setting Up Hardware

 		
 Using the Display

 		
 Gstreamer Pipelines

 		
 Disabling the Display

 		
 EEPROM

 		
 Verifying EEPROM Initialization

 		
 Writing to EEPROM

 		
 Reading from EEPROM

 		
 eMMC

 		
 Viewing Available eMMC Partitions

 		
 Mounting the eMMC

 		
 Write to eMMC

 		
 Reading from eMMC

 		
 Booting from eMMC

 		
 Ethernet

 		
 Requirements

 		
 Establishing a Connection

 		
 Finding the IPv4 Address

 		
 SSH into Kit

 		
 Fan

 		
 Requirements

 		
 Controlling the Fan

 		
 GPIO

 		
 Toggling User LED (D31)

 		
 GPIO Expander (U90)

 		
 HDMI

 		
 Requirements

 		
 Hardware Setup

 		
 I2C

 		
 Requirements

 		
 Hardware Setup

 		
 Using I2C1

 		
 JTAG

 		
 Requirement

 		
 Hardware Setup

 		
 Device Connection Setup

 		
 Connection Test

 		
 Exit the Software

 		
 OSPI NOR Flash

 		
 Available NOR Partitions

 		
 Write to OSPI

 		
 Reading from OSPI

 		
 Parallel Camera

 		
 Requirements

 		
 Hardware Setup

 		
 Picture Time!

 		
 Viewing the Image

 		
 Make a Video

 		
 PCIe

 		
 Requirements

 		
 Hardware Setup

 		
 PCIe Connection

 		
 Test PCIe

 		
 Power LEDS

 		
 Power and Reset Buttons

 		
 RTC

 		
 RTC Naming

 		
 SD Card

 		
 Requirements

 		
 Hardware Setup

 		
 Mounting the SD Card

 		
 Write to SD Card

 		
 Read from SD Card

 		
 Unmount the SD Card

 		
 SPI

 		
 Requirements

 		
 Hardware Setup

 		
 Thermal Zone

 		
 Reading Temperature

 		
 Temperature Trip Point

 		
 UART

 		
 Requirements

 		
 Hardware Setup

 		
 UART1 & UART2 Communication

 		
 Enabling UART1 or UART2 as an Additional Serial Console

 		
 USB

 		
 Requirements

 		
 Configuring the Development Kit for USB Host Mode

 		
 USB Host Connection (FAT32)

 		
 Write to the USB Host Device

 		
 Read from the USB Host Device

 		
 Unmounting the Drive

 		
 Configuring the Development Kit for USB OTG Mode

 		
 Connecting the Development Kit to the Host PC

 		
 Communicating with the Development Kit

 		
 WiFi

 		
 Hardware and Software Setup

 		
 Configure WiFi

 		
 Establish the Connection

 		
 Booting Essentials

 		
 SD Card

 		
 Create a Bootable SD Card

 		
 Requirements

 		
 Flashing a Complete Image

 		
 Updating Individual Parts of the SD Card

 		
 Boot from SD Card

 		
 eMMC

 		
 Flash the eMMC

 		
 Boot from eMMC

 		
 Copying Files to the Device

 		
 Using a Network

 		
 Network Filesystem ServerLink to Network Filesystem Server

 		
 Using Removable Storage Devices

 		
 Boot Modes

 		
 Application Development

 		
 Install the SDK

 		
 Requirements

 		
 Host Setup

 		
 Download the Pre-Built SDK Installer

 		
 Source the Cross-Compilation Enviroment

 		
 Hello World

 		
 Blink

 		
 BSP Development

 		
 Build the BSP

 		
 Requirements

 		
 Host Setup

 		
 Git

 		
 Setup and Build the BSP

 		
 Download the BSP Meta Layers

 		
 Initialize the BSP Environment

 		
 Configure the Build

 		
 Start the Build

 		
 Components of a Built BSP

 		
 Source Locations

 		
 Building the SDK Installer

 		
 Modifying the BSP

 		
 Adding Packages to the BSP

 		
 Modify the Kernel Config

 		
 Modify the BSPâ��s Kernel Source Directly

 		
 Change the Linux Kernel Device Tree

 		
 Save the Change

 		
 Clean Packages

 		
 Create a Custom Meta Layer

 		
 bitbake-layers Tool

 		
 Check Existing Layers

 		
 Create a Layer

 		
 Add Layers

 		
 Extend a RecipeLink to Extend a Recipe

 		
 Standalone Kernel Development

 		
 Requirements

 		
 Clone the Linux kernel

 		
 Make

 		
 3rd Party Integration

 		
 Eclipse IDE Setup

 		
 Install Eclipse

 		
 Adding Eclipse Plug-ins

 		
 C/C++ Plug-ins

 		
 Configuring the Yocto Plug-in

 		
 Creating and Configuring a New C Project

 		
 Configure the Project Properties

 		
 Build the Project

 		
 Pre-Built Binaries

 		
 Download Link for Pre-Built Image

 		
 Download Links for Pre-Built Image Components

 		
 Download Link for the SDK Installer

 		
 Relevant Guides

_images/pcm-065_eclipse-setup-1.png
Workspace Launcher
Select a workspace

Eclipse Platform stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Browse...

("] Usethis as the default and do not ask again

e (KD

_images/pcm-065_eclipse-setup-10.jpg
Edit Na S e Windo

]
a OpenFile.
Folder & [E3Resource
File B
E Untitled Text File =0
6 Other
2
Rename...
Convert Line Delimiters To
i Switch Workspace
B Restart
Import.
' Export.
Properties
r Exit
£ a ==
i Tasks 52 8
- Oitems
© + Desciption Resource path Location

_images/pcm-065_display-callouts.png
>A
8
&
o
5}
- Q
:

_images/pcm-065_display.png

_images/pcm-065_eclipse-setup-13.jpg
C/C++ - Helloworld/src/Helloworld.c - Eclipse Platform
s~ 8-&-Gla-s-Erer|sr0rar|es]| le s «|x B .
= L (LR RN T
% - ® Name : Helloworld.c[] =
= #include <stdio.h-
Srdtoers Finclude <otdlib.n BRN oo
» @lincludes S ctdink |
@ =int main(veid) { U stdio.h
SC puts("Hello World"); /* prints Hello World =/ u stdlib.h
| Erelowotdc, | rEEde {EXEUISKCESS o main(void): int
[£ Problems 5% "\ ¥ Tasks| B Console| = Properties v =8
per
Oitems
Description Resource Path Location Type

J i /Helloworld/src/Helloworld.c

_images/pcm-065_eclipse-setup-14.jpg
i s

c/cis

se Platform

Helloworld/src/Helloworl

B-R 6 | @ -8 -E-F B0 Q| OS

& Tasks| B Console| B Properties

Properties AltsEnter
Resource

Description

Path

Location

Type

0

/Helloworld

2N OM

ERLR R
u stdio.h
o stdlibh
o main(void): int

=0

*®

_images/pcm-065_eclipse-setup-11.jpg
Select a wizard

Create a new Cproject [

Wizards:

| @

W Jave FTOJECCITONI ERIS

%% Plug-in Project
» & General
v /o

C++Project

Makefile Project with Existing Code
>&ovs

> & Java

@ cosck QNG [cncel || o

_images/pcm-065_eclipse-setup-12.jpg
© Project

Create C project of selected type

Project name: | Helloworld |

[Use default location

Locatiot Browse...

Project type: Toolchains:
v & Executable Cross GCC
© Empty Project Linux GCC

© Hello World ANSI C Project

> & Shared Library

> & Static Library

» & Yocto Project ADT CMake Project

> & Makefile project

> & GNU Autotools

> & Yocto Project ADT Autotools Project

 show project types and toolchains only f theyare supported on the platform

@ e | e | e (R

_images/pcm-065_eclipse-setup-15.jpg
Properties for Helloworld

| @

» Resource
Builders
v c/ce+Build
Build Variables
Environment
Logging

Tool Chain Editor
» C/C++General
Project References
Run/Debug Settings

Settings

Configuration: | Debug [Active] =

Manage Configurations...

®Tool Settings | #Build Steps | ®Build Artifact

v & Gcec compiler
& Dialect
(& Preprocessor
¢ symbols
& includes
¢ Optimization
(2 Debugging
¢ warnings
& Miscellaneous
v ® GCcCLinker
2 General
B Libraries
2 Miscellaneous

(2 shared Library Settings

¥ GCC Assembler
2 General

inary Parsers | @ Error Parsers

Command:

Alloptions: [00-g3-Wall-c-fmessage-length=0

Expert settings:

ﬁ:;“p"a‘ﬂ‘edr .. [S(COMMAND) S{FLAGS) ${OUTPUT_FLAG) s{oUTPU]

Restore Defaults Apply

| o

_images/pcm-065_eclipse-setup-16.jpg
Properties for Helloworld

(a@|
> Resource
Builders
v c/cr+Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
> C/Cr+General
Project References
Run/Debug Settings

Settings -

Configuration: | Debug [Active] < | [Manage Configurations... |

®Tool Settings | #Build Steps | ®Build Artifact

GCC C Compiler command: |${cc} |

& Dialect All options: -00-g3-Wall-c fmessage-length=0
(& Preprocessor

¢ symbols

& includes

¢ Optimization

(2 Debugging

¢ warnings

& Miscellaneous
v ® GeecLinker

2 General

B Libraries

2 Miscellaneous

(2 shared Library Settings
v GCCAssembler

2 General

inary Parsers | @ Error Parsers

Expert settings:

ﬁ:;“p"a‘ﬂ‘edm | ${COMMAND]} ${FLAGS} ${OUTPUT_FLAG} ${OUTPU|

Restore Defaults| | Apply

| o

_images/pcm-065_eclipse-setup-17.jpg
Properties for Helloworld

| | Settings -
» Resource
Builders Configuration: | Debug [Active] 2 | | Manage Configurations...
v ¢/c++Build
Build Variables
Environment ®Tool settings | #Build Steps | PBuild Artifact inary Parsers | @ Error Parsers
Logging v ® Gee c Compiler Command: [s{cc]
settings & Dialect llopti e
Tool Chain Editor o EECEEChEy shared
) (& Preprocessor
»
ccercenenl & symbols
Project References B wicudes
Run/Debug Settings

¢ Optimization
(2 Debugging
& Warnings ﬁz;“p";i:edm (stcommAND) SIERPNESIS(FLAGS} S{OUTPUT_FLA|
& Miscellaneous

v & GCCCLinker
2 General
B Libraries
2 Miscellaneous
(2 shared Library Settings

v 8 GCC Assembler
2 General

Expert settings:

Restore Defaults Apply

® | o

_images/pcm-065_eclipse-setup-2.png
Resource - Eclipse Platform

Welcome to Eclipse

Overview

e

Workbench

®

samples

What's New

e

_images/pcm-065_eclipse-setup-20.jpg
Postbuild steps
‘Command:

[scp./Helloworld root@10.0.0.1

ssh root@10.0.0.153 ./Helloworld

Description:

(

_images/pcm-065_eclipse-setup-18.jpg
Properties for Helloworld

[pefitertext @
» Resource

Builders
v ¢/c++Build

Build variables

Environment

Logging

Settings.

Tool Chain Editor
> C/C++General
Project References
Run/Debug Settings

Settings

Configuration: | Debug [Active] < | [Manage configurations...

®Tool Settings | #Build Steps | ®Build Artifact

inary Parsers | @ Error Parsers

v & Gcec compiler
3 Dialect
(& Preprocessor
¢ symbols
& includes
¢ Optimization
(2 Debugging
¢ warnings
2 Miscellaneous
v ® GeecLinker
2 General
2 Libraries
& Miscellaneous
(2 shared Library Settings
GCC Assembler
2 General

Command:

[stasp |

All options:

Expert settings:
Command

e pattar [${coMMAND} ${FLAGS} ${OUTPUT_FLAG} ${OUTPU]

Restore Defaults

Apply

Cancel

_images/pcm-065_eclipse-setup-19.jpg
Properties for Helloworld

@| settings -
» Resource
Builders Configuration: | Debug [Active] 2 | | Manage Configurations...

v ¢/c++Build

Build Variables

Environment ool settings | #Build Sﬁeps PBuild Artifact inary Parsers | @ Error Parsers

Logging Pre-build steps

Settings. Command:

Tool Chain Editor
> C/Ct+General

Project References DesepHon:
Run/Debug Settings
Postbuild steps
Command:
['
Description:

Restore Defaults Apply

@ | o

_images/pcm-065_eclipse-setup-23.jpg
C/C++ - Helloworld/src/Helloworld.c - Eclipse Platform

d v @ FrOvQU- |® S e

= O/ [@ Helloworld.c %
@ Name : Helloworld.]

#include <stdio.h>
#include <stdlib.h>

& Helloworld
» i Binaries
Includes
> @src

» = Debug

< int main(void) {
puts(“Hello World"); /* prints Hello World */
return EXIT_SUCCESS;

_images/pcm-065_eclipse-setup-24.jpg
[E Problems | & Tasks | B console %2 _E Properties ¢ oG HaE

DT Build Console [Helloworld]

22:35:02 **** Incremental Build of configuration Debug for project Helloworld =+++

nake all

Building target: HelloWorld

TInvoking: GCC C Linker

aarch64-poky-linux-gcc -mcpu=cortex-a3s+crescrypto -fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wform
/opt/fsl-imx-xwayland/5.4-zeus/sysroots/x86_64-pokysdk-Linux/usr/libexec/aarch6a-poky-linux/gcc/aarched-
Finished building target: HelloWorld

B0y =0

make --no-print-directory post-build
scp_./HelloWorld root@le.0.0.153:~; ssh root@le.e.0.153 ./HelloWorld
Hello world

22:35:04 Build Finished (took 1s.35lms)

_images/pcm-065_eclipse-setup-21.jpg
Properties for Helloworld

| @| Settings

» Resource

Builders Configuration: | Debug [Active] 2 || Manage Configurations...
v ¢/c++Build
Build Variables
Environment ®Tool Settings | #Build Steps | PBuild Artifact| (@ Binary Parsers | @ Error Parsers
Lng?'"g Artifact Type: Executable -
Settings
Tool Chain Editor Artifact name: ${ProjName} 2
ric/ctEGael Artifact extension:
Project References
Run/Debug Settings Output prefix: lib

Restore Defaults Apply

@ |

_images/pcm-065_eclipse-setup-22.jpg
| ®Tool settings | #Build steps | ®Build Artifact | R Binary Parsers | @ Error Parsers |

Artifact Type: [Executable

Artifactname: [s{ProjName}

Artifact extension: |

outputprefic: |

_images/pcm-065_eclipse-setup-4.png
Available Software
Select a site or enter the location of a site.

Work with: |type or select asite - A

Find more software by working with the "Available Software Sites" preferences.

Name Version

@ Thereis no site selected.

Select All Deselect All
Details

] Hide items that are already installed

What is already installed?

& show only the latest versions of available software

& Group items by category
() show only software applicable to target environment

© Contactall updatesites during install to find required software

@ <Back Next> Ccancel Finish

_images/pcm-065_eclipse-setup-5.png
Add Repository

Name: [][rocl..

Location: [http://][Archive...

@ cancel | add |

_images/pcm-065_eclipse-setup-3.png
Install New Software.
3

8 outline 5

/An outline is not available.

ZTasks %
oitems
v ! Description

B | E5Resource

S

Resource Path Location

g Oitems selected

_images/pcm-065_eclipse-setup-8.png
Preferences

General

Ant

c/cH+

Help

Install/Update

Java

Plug-in Development
Remote Systems
Run/Debug
Team
Terminal
Yocto Proje

a@|

Yocto Project ADT -

Cross development profiles:

| standard Profile 2 [saveas...| |Rename

|Remove
Cross Compiler Options:

(O standalone pre-built toolchain

@ Build system derived toolchain

Toolchain Root Location: | || Browse..
Sysroot Location: | || Browse..
Target Architecture:
Target Options:

O QEMU

Kernel: Browse..
Custom Option:

@® External HW

|Restore Defaults || Apply

| one | S

_images/pcm-065_eclipse-setup-9.png
Preferences

[@| Yocto Project ADT

> General)
Cross development profiles:
» Ant
> e standard Profile 2| |saveas...| |Rename
> Help Remove
> Install/Update =
¥ Sava Cross Compiler Options:
» Plug-in Development @ Standalone pre-built toolchain
> Remote Systems O Build system derived toolchain
» Run/Debug
» yesni Toolchain Root Location: | /opt/fsl-imx-xwayland/5.4-zeus Browse..
Terminal 3 f o —
Yocto Project ADT Sysroot Location: | /opt/fslimx-xwayland/s.4-zeus/sysroots Browse..
Target Architecture: aarch64-poky-linux =
Target Options:
O QEMU
Kernel: Browse..

Custom Option:

@® External HW

restoreperauts (RGN

®@ Ccancel oK

_images/pcm-065_eclipse-setup-6.png
Available Software
Check the items that you wish to install.

Work with: |http://downloads.yoctoproject.org/releases/eclipse-plugin/1.8/juno/ - Add..

Find more software by working with the "Available Software Sites" preferences.

|

i Name Version
0 Yocto Project ADT Plug-in 1

0 Yocto Project Bitbake Commander Plug-in

0 Yocto Project Documentation plug-in

[SeEeAL) | DesclectAll | 4items selected

Details
& show only the latest versions of available software [Hide items that are already installed
 Group items by category What s already installed?

[show only software applicable to target environment

@ Contactall updatesites during install to find required software

@ <Back Next> || Cancel Finish

_images/pcm-065_eclipse-setup-7.png
Eclipse Fi

B | E5Resource

o
Preferences,
i Tasks 82 < =g
0items
v+ |Description Resource | Path Location

_images/pcm-065_eth-callout.png

_images/pcm-065_emmc-bootswitch.png
ON

_images/pcm-065_emmc_boot-switches.png
ON

_images/pcm-065_flex_spi_bootswitch.png
ON

_images/pcm-065_gpio-d31.png

_images/pcm-065_eth-shh-issues.png
Virtual Machine Settings

Hardware Options

| Device Summary
| E=IMemory 16GB
{processors 4
[\ Hard Disk (SCS) 29068
@ CD/DVD (SATA) Auto detect
2 Network Adapter NAT
USB Controler Present.
< Sound Card Auto detect
S Printer Present
[Clpisplay Auto detect
Add..

Device status
Connected

Connect at power on

nection

O Bridge
Replcate physical network connection state

& Configure Adapters

(@ NAT: Used to share the host's IP address
O Host-only: A private network shared with the host
O custom: Spediic virtual network

VMneto
O LAN segment:

LAN Segments...

red directly to the physical network

_images/pcm-065_fan-callouts.png
Fan X73 (12V)

_images/pcm-065_i2c-callout.png

_images/pcm-065_jtag-connector.png
) PHYTEGC
) 44819 PCH042

JTAGPin1

_images/pcm-065_hdmi-hdmi-connection.png
onn

1

o
- - o~
~3283 : - /
23 T
. 2
2y, 3
= '
s 2 -',a
23 : i

- " .

18- .

NEL gpqeerasssednene’

_images/pcm-065_hdmi.png
eda

[P
st e eiara LA
i 8 il

Sy M[S EI sepqre (peprens) 3
. [t e K

wal

Fa

::ly

o,
i

N
2

"o
fups 2
e

!
7‘ e

ene bseasetss ane

pEYNEED

_images/pcm-065_jtag.png

_images/pcm-065_modifybsp-soundcard-closeup.png
raphics support

S
HID support --

_images/pcm-065_S6-callout.png
Switch S6

_images/pcm-065_audio-alsamixer-gui.png
Alsafixer vi.1.9

Card: imxBepep-sgt15688

Chip
Uiew: F3:[Playbackl F4: Capture F5: A1l

Iten: Headphone [dB gain: —28.88. -20.881

Help
Systen infornation
Select sound card
Exit

23023 SO 58058 a
Headphon PCM Lineout Mic Capture Capture

] mIC_IN

VTV VIV

_images/pcm-065-download-prebuilt-bin-note.jpg
Download Links for Pre-Built Images

Download the complete &N Pard Imane
Open link in new tab

Open link in new window

Download Link openiink inincognito wingow nts
Save link as...
Download the Bootlo: Copy link address %
Q AdBlock — best ad blocker >
Download the Kernel
Get image descriptions from Google >
Inspect Ctrl+Shifts]

Download the Kernel

Download the Kernel dtb LVDS overlay

Download the Kernel dtb Parallel Camera overlay

_images/pcm-065-sd-bootswitch.png
ON

_images/pcm-065_audio_callout.png
Audio Interface X101

_images/pcm-065_pcie-callout.png

_images/pcm-065_pcie.png
@w

PCle Siot X81
x

_images/pcm-065_network.png
Host Machine

DHCP
Server

ASwitch

phyCORE RDK
Ethernet

_images/pcm-065_para-camera.png

_images/pcm-065_quickstart-devicemanager.jpg
ﬁ Device Manager

File Action View Help
e o E HE B EX®

¥ é wi-tloan A
> H Audio inputs and outputs
> 3 Batteries
> Bluetooth
> Q Cameras
> Computer
Disk drives
> [Display adapters
> Human Interface Devices
> *@ |DE ATA/ATAPI controllers
> ' Jungo Connectivity
> Keyboards
> L1 Memory technology devices
> . Mice and other pointing devices
> [Monitors
> ' Network adapters
' Other devices
> B Portable Devices
v @ Ports (COM & LPT)
i USB Serial Port (COM27)
§ USB Serial Port (COM28)
> M Print queues
> ™ Printers
> n Processors
> B9 Security devices
v [T] Crmart rard raadare

_images/pcm-065-bootswitch-closeup.png
Switch 10

_images/pcm-065_quickstart-serialconfig.jpg
¥ COM4 - Tera Term VT

File Edit | Setup Control Windoy
Terminal...
Window..
Font..
Keyboard...

Serial port...

Pre
H.

SSH Authentication.
SSH Forwarding...
SSH KeyGenerator.
TCR/IP...

General.
Additional settings..

etup.

Restore setup..

Load key map...

_images/pcm-065_power-leds.png
S ikiiiiic

Status LEDs 10-12 Status LEDs 13-16

_images/pcm-065_quickstart-bootlog.png
Power Connector X64

_images/pcm-065_quickstart-terminal-session.jpg
VT
File Edit Setup Control Windo
New connection.. Alt+N

in connectiol

Replay Log.

TTY Replay

Print.

Exit

Exit All

_images/pcm-065_modifybsp-soundcard.png
Arrow
features.

-
<eys navigate the menu
Press <Esc><Esc> to exit, <?> for Help, </> for Search

e
£
[

.
X
X

<

[
<
<

[*1

<M>

<Enter> selects submenus ---> (or empty submenus ----)

Legend: [*] built-in [] excluded

PS support
TP clock support
in controllers
PIO Support --->|

--->

daptiy

oard level reset or power off
ower supply class support --->]
Hardware Monitoring support
eneric Thermal sysfs driver
atchdog Timer Support --->|
onics Silicon Backplane support
roadcom specific AMBA ----
Multifunction device drivers
oltage and Current Regulator Support
emote Controller support --->

- - -3

j<*> Multimedia support

raphics support

D/SDIO card support --->|
ony MemoryStick card support

ED Support

< Exit > < Help >

< Save >

Highlighted letters are hotkeys
< > module capable]

<M> module

< Load >

Pressing <Y> includes, <N> excludes

<M> modularizes |

_images/pcm-065_sdcard.png

_images/pcm-065_spi-closeup.png
Connect Pins 4-5

_images/pcm-065_quickstart_serial_connection.png
Debug Connector X51

_images/pcm-065_rst-button.png

_images/pcm-065_uart-x59-1491-2-header-correction.jpg
Component Placement Diagram: Top Side 1491.2 (PCI-942)

_images/pcm-065_uart.png

_images/pcm-065_spi.png
SPIX94

_images/pcm-065_thermal.png

_images/pcm-065_quickstart-terminal-settings.jpg
Tera Term: Serial port setup

Port: COM4 ¥ oK
|115200 v

Speed:

Data: 8 bit v Cancel
Parity: none v

Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecichar 0 mseciline

_images/pcm-065_quickstart_bootup.png

_images/pcm-065_uart_bootswitch.png
ON

_images/pcm-065_usb-x52.png

_images/pcm-065_uart2.png
Switch S6

_images/pcm-065_uart2_x59-pin-out.png
L uHII\Hm\ g

0 Camre

Pin1

{ Pin 5 (VART2.RY) —

Fin3 (6ND)

_images/pcm-065_wifi.png

_images/pcm-065_usb-x91.png

_images/pcm-065_usb.png
USB-AX91 USB OTG X52

_images/pcm-065_uart1.png

_images/pcm-065_uart2-x59-ttl.png
TTL Cable

RXD
TXD

GND

_images/pcm-065_uart0.png
Debug Connector X51

