

phyCORE-AM64x

Meet the phyCORE-AM64x!

 Release Notes

Release Notes

	BSP-Yocto-Ampliphy-AM64x-PD23.2.1

	BSP-Yocto-Ampliphy-AM64x-PD23.2.0

 BSP-Yocto-Ampliphy-AM64x-PD23.2.1

BSP-Yocto-Ampliphy-AM64x-PD23.2.1

This document highlights the key features and support included in the BSP-Yocto-Ampliphy-AM64x-PD23.2.1 software release for the phyCORE-AM64x SOM and development kit.

Board Support Package Status

	BSP Operating system

	Linux

	Release Status

	RELEASED

	Release Date

	2024-03-29

	Repository

	PHYTEC Public Repos [https://github.com/phytec]

	Binaries

	BSP-Yocto-Ampliphy-AM64x-PD23.2.1 [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/]

New in this Release

Yocto

	Adds support for partup [https://partup.readthedocs.io/en/latest/] to easily flash the eMMC.

	Integrates a blinky demo for the M4F Co-processor based on TI’s MCU+ SDK.

	Documentation explains how to build and deploy a custom firmware.

	New Yocto image phytec-initramfs-image to flash and boot a tiny initramfs-based Linux from the OSPI NOR Flash.

	New Yocto image phytec-container-image to provide a BSP with virtualization enabled.

	New Yocto distro ampliphy-rt which enables Linux with PREEMPT_RT patches.

	New Yocto distro ampliphy-rauc for A/B system updates based on RAUC [https://rauc.io/].

Linux Kernel

U-Boot Bootloader

	New Boot Source available; load and run U-Boot via UART (X49).

	Supports QSPI SOM option as alternative for OSPI NOR Flashes.

	Supports standard boot, offering integrated booting for various OSs and devices, including EFI boot and EFI bootmgr.

Issues Fixed

Known Issues

	Linux RT worst-case latency can go up to 300us under heavy memory load.

	The flashcp command occasionally fails during the verification step.

Software Versioning

The BSP-Yocto-Ampliphy-AM64x-PD23.2.1 software release is largely based off of Texas Instruments’s v09.02.00.005 Processor SDK Linux release and shares much of the same components and features.

Software Versioning

	Tested Build Environment

	Ubuntu 20.04

	Ubuntu 20.04 Release Downloads [https://releases.ubuntu.com/20.04/]

	Linux Kernel

	v6.1.69-09.02.00.005 (tag: v6.1.69-v09.02.00.005-phy3)

	PHYTEC Linux kernel repository [https://github.com/phytec/linux-phytec-ti/tree/v6.1.69-09.02.00.005-phy3]

	U-Boot Bootloader

	v2023.04 (tag: v2023.04-09.02.00.005-phy2)

	PHYTEC U-Boot bootloader repository [https://github.com/phytec/u-boot-phytec-ti/tree/v2023.04-09.02.00.005-phy2]

	Yocto

	4.0.16 Kirkstone (tag: BSP-Yocto-Ampliphy-AM64x-PD23.2.1)

	PHYTEC Meta Layer repository [https://git.phytec.de/meta-phytec/tree/?h=BSP-Yocto-Ampliphy-AM62x-PD23.2.1]

Part Number Summary

Hardware Summary

	Part Number

	Hardware Description

	Configuration Details (DDR4 / eMMC / NOR / Ethernet PHY / Temperature)

	PCB Version

	PCM-072-42F2DE11I.A0

	phyCORE-AM64x SOM (HS-FS silicon)

	2GB / 32GB eMMC / 64MB OSPI NOR / Yes / Industrial

	1565.1

	PCM-072-42F2DE01I.A0

	phyCORE-AM64x SOM (HS-FS silicon)

	2GB / 32GB eMMC / 64MB OSPI NOR / No / Industrial

	1565.1

	PCM-072-42F2BX11I.A0

	phyCORE-AM64x SOM (HS-FS silicon)

	2GB / 8GB eMMC / no NOR / Yes / Industrial

	1565.1

	PCM-072.A2

	phyCORE-AM64x SOM (HS-FS silicon)

	2GB / 16GB eMMC / 64MB OSPI NOR / Yes / Industrial

	1565.1

	PCM-072.A1

	phyCORE-AM64x SOM (GP silicon)

	2GB / 16GB eMMC / 64MB OSPI NOR / Yes / Industrial

	1565.1

	PBA-C-25.A1

	phyCORE-AM64x Carrier Board

	
	1566.1

Kit Summary

	Part Number

	Yocto MACHINE

	Hardware Description

	KPB-07124-002.A0

	phyboard-electra-am64xx-2

	PCM-072-42F2DE11I.A0 + PBA-C-25.A1 (Default Kit)

	KPB-07225-001.A0

	phyboard-electra-am64xx-1

	PCM-072.A2 + PBA-C-25.A1 (Deprecated)

Supported Builds

This release supports multiple builds for different kits, Yocto images and distribution. The follow table lists all supported builds. See Part Number Summary for an detailed explanation of Yocto Machines and associated hardware.

Supported Build Summary

	Yocto MACHINE

	Yocto Image

	Yocto Distro

	Description

	phyboard-electra-am64xx-2

	phytec-headless-image

	ampliphy

	Headless image with PHYTEC’s ampliPHY distribution for the KPB-07124-002.A0 kit.

	phyboard-electra-am64xx-2

	phytec-headless-image -c populated_sdk

	ampliphy

	Headless image with PHYTEC’s ampliPHY distribution for the KPB-07124-002.A0 kit.

	phyboard-electra-am64xx-2

	phytec-container-image

	ampliphy

	Container image with PHYTEC’s ampliPHY distribution for the KPB-07124-002.A0 kit. This build includes virtualization.

	phyboard-electra-am64xx-2

	phytec-headless-image

	ampliphy-rauc

	Headless image with PHYTEC’s ampliPHY RAUC distribution for the KPB-07124-002.A0 kit. Enables RAUC and includes a partup image for updates.

	phyboard-electra-am64xx-2

	phytec-headless-image

	ampliphy-rt

	Headless image with PHYTEC’s ampliPHY RT distribution for the KPB-07124-002.A0 kit. Enables to the Linux RT branch.

	phyboard-electra-am64xx-2

	phytec-initramfs-image

	ampliphy

	initramfs image with PHYTEC’s ampliPHY distribution for the KPB-07124-002.A0 kit. Contains an initramfs to boot Linux from OSPI.

	phyboard-electra-am64xx-1

	phytec-headless-image

	ampliphy

	Headless image with PHYTEC’s ampliPHY distribution for the KPB-07124-002.A0 kit.

Linux Device Tree Summary

This is a summary of how the device tree source files (.dts) and the various include files (.dtsi) are broken down in the kernel. These files describe the hardware in a hierarchical and modular way to the kernel, connecting device drivers to the interfaces brought out by the carrier board.

Linux Device Tree Summary

	Hardware Target

	Device Tree File Descriptions

	Filename

	KPB-07124-002.A0 (Default Kit)

	Default Device Tree (includes the other .dtsi files below)

	k3-am642-phyboard-electra-rdk.dts

	
	Processor .dtsi - This file adds general support for the AM642x Processor from Texas Instruments

	k3-am642.dtsi

	
	SOM .dtsi- This file adds support for your specific SOM’s population options

	k3-am64-phycore-som.dtsi

	
	PCIe Overlay

	k3-am64-phyboard-electra-pcie-usb2.dtbo

	
	SPI1 and UART3 Overlay

	k3-am64-phyboard-electra-x27-uart3-spi1.dts

	
	GPIO Fan Overlay

	k3-am64-phyboard-electra-gpio-fan.dts

	
	Disable OSPI NOR Overlay

	k3-am6-phycore-disable-spi-nor.dts

	
	Disable RTC Overlay

	k3-am6-phycore-disable-rtc.dts

	
	Disable SOM Ethernet PHY Overlay

	k3-am6-phycore-disable-eth-phy.dts

If designing your own custom carrier board around the phyCORE-AM64x SOM, you will eventually define a custom device tree for your board that includes the .dtsi file for the SOM, which PHYTEC has provided for you. All the BSP changes custom for your application should eventually be consolidated into its own Meta Layer.

Supported Boot Sources

The phyCORE-AM64x allows to load a bootloader from different kind of sources.

Boot Source Summary

	Boot Source

	Status

	Notes

	SD-Card

	Supported

	

	eMMC

	Supported

	

	QSPI/OSPI-Nor Flash

	Supported

	

	Ethernet

	Unsupported

	

	USB/DFU

	Unsupported

	phyBOARD-Electra has a USB Hub connected to the USB interface.

	UART

	Supported

	Debug UART (X49) - Can’t boot Linux via UART.

Supported Features

The following table contains all supported phyCORE-AM64x features.

Hardware Feature Summary

	Feature

	Sub-Feature

	Status

	Notes

	SoC

	AM6442

	Supported

	

	
	AM6441

	Untested

	

	
	AM6422

	Untested

	

	
	AM6421

	Untested

	

	
	AM6412

	Untested

	

	
	AM6411

	Untested

	

	
	AM243x

	Unsupported

	

	DDR4

	512 MB

	Unsupported

	

	
	1 GB

	Supported

	

	
	2 GB

	Supported

	

	
	Inline ECC

	Supported

	

	eMMC

	
	Supported

	

	SPI-NOR Flash

	OSPI

	Supported

	

	
	QSPI

	Supported

	

	Power Management

	PMIC

	Supported

	

	
	Suspend to RAM

	Unsupported

	

	
	MCU Only Low Power Mode

	Unsupported

	

	
	A53 1.4 GHz Frequency

	Supported

	

	Watchdog

	
	Supported

	

	SD-Card

	
	Supported

	

	RTC

	
	Supported

	

	GPIO

	
	Supported

	

	UART

	
	Supported

	

	I2C

	
	Supported

	

	SPI

	
	Supported

	

	ePWM

	
	Untested

	

	eQEP

	
	Untested

	

	ADC

	
	Supported

	

	CAN

	
	Supported

	

	
	CAN FD

	Supported

	

	USB 2.0

	
	Supported

	

	USB 3.0

	
	Supported

	

	Ethernet

	
	Supported

	

	
	TSN Support

	Supported

	

	PCIe

	
	Supported

	

	TPM

	
	Supported

	

	Security

	Secure Boot

	Unsupported

	

	
	Secure Key Storage

	Unsupported

	

	
	TEE

	Supported

	

	
	Cryptographic Acceleration

	Untested

	

	MCU

	GPIO

	Supported

	

	
	SPI

	Untested

	

	
	UART

	Untested

	

	
	CAN

	Untested

	

	
	I2C

	Untested

	

	PRU Subsystem

	Ethercat

	Untested

	

	
	Profibus

	Untested

	

	
	GPIO

	Untested

	

	
	UART

	Untested

	

	
	I2C

	Untested

	

	Virtualization

	Podman

	Supported

	Only available in phytec-container-image

Interface Overview

The following table contains all interfaces connected to the phyCORE-AM64x’s connectors and each status.

Note

For simplicity reasons interfaces located in the MCU and WAKEUP domains have a prefix. Interfaces located in the MAIN domain might have a main_ prefix but it was not added here.

Interface Overview

	Interface

	Detail

	Status

	Notes

	ADC

	adc0

	Supported

	

	CAN

	mcan0

	Supported

	

	
	mcan1

	Supported

	

	ECAP

	ecap0

	disabled

	

	
	ecap1

	disabled

	

	
	ecap2

	disabled

	

	Ethernet

	eth0 (cpsw ethernet)

	Supported

	DP83867IRRGZ SOM PHY

	
	eth1 (pri-icssg0 ethernet)

	Supported

	DP83867IRRGZ CB PHY

	
	eth2 (pri-icssg0 ethernet)

	Supported

	DP83867IRRGZ CB PHY

	EPWM

	epwm0

	Supported

	Enabled via Device Tree Overlay

	
	epwm1

	disabled

	

	
	epwm2

	disabled

	

	EQEP

	eqep0

	disabled

	

	
	eqep1

	disabled

	

	
	eqep2

	disabled

	

	FSI

	fsi0

	disabled

	

	
	fsi1

	disabled

	

	
	fsi2

	disabled

	

	
	fsi3

	disabled

	

	
	fsi4

	disabled

	

	
	fsi5

	disabled

	

	GPIO

	gpio0

	Supported

	

	
	gpio1

	Supported

	

	
	mcu_gpio0

	disabled

	

	GPMC

	gpmc0

	disabled

	

	I2C

	i2c0

	Supported

	

	
	i2c1

	Supported

	

	
	i2c2

	disabled

	

	
	i2c3

	disabled

	

	
	mcu_i2c0

	disabled

	

	
	wkup_i2c0

	disabled

	

	MMC

	mmc0

	Supported

	eMMC Flash Memory on the SOM

	
	mmc1

	Supported

	SD Card Slot on Dev Kit Carrier Board

	mPCIe

	serdes0

	Supported

	mPCIe at the X31 connector
- Enabled with device tree overlay
- serdes0 signals muxed between USB HUB and mPCIe

	OSPI

	ospi0

	Supported

	NOR Serial Flash on SOM

	PRUSS

	pr0_pru0

	disabled

	

	
	pr0_pru1

	disabled

	

	SPI

	spi0

	Supported

	Enabled with spidev driver via Device Tree Overlay

	
	spi1

	disabled

	

	
	spi2

	disabled

	

	
	spi3

	disabled

	

	
	spi4

	disabled

	

	
	mcu_spi0

	disabled

	

	
	mcu_spi1

	disabled

	

	UART

	uart0

	Supported

	Default serial console - Connected to UART-to-USB FTDI IC

	
	uart1

	Supported

	UART1 may be used by TIFS firmware

	
	uart2

	disabled

	

	
	uart3

	disabled

	

	
	uart4

	disabled

	

	
	uart5

	disabled

	

	
	uart6

	disabled

	

	
	mcu_uart0

	Supported

	Default stdout for M4F co-processor

	
	mcu_uart1

	disabled

	

	USB

	usb0

	Supported

	Connected to USB 3.0 HUB
- USB super speed signals (serdes0) muxed between USB HUB and mPCIe with device tree overlay
- USB2.0 speeds still supported when mPCIe enabled

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

 BSP-Yocto-Ampliphy-AM64x-PD23.2.0

BSP-Yocto-Ampliphy-AM64x-PD23.2.0

This document highlights the key features and support included in the BSP-Yocto-Ampliphy-AM64x-PD23.2.0 software release for the phyCORE-AM64x SOM and development kit.

Board Support Package Status

	BSP Operating system

	Linux

	Release Status

	RELEASED

	Release Date

	2023-09-29

	Repository

	PHYTEC Public Repos [https://github.com/phytec]

	Binaries

	BSP-Yocto-Ampliphy-AM64x-PD23.2.0 [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.0/images/ampliphy/phyboard-electra-am64xx-2/]

New in this Release

Yocto

	MACHINE=phyboard-electra-am64xx-2 for TI’s High Security-Field Securable (HS-FS) SoCs.

	HS-FS variant phyCORE-AM64x SOMs are now the default SOM configuration shipping in Development kits.

	UART boot source now available.

	Inline ECC support is now available and enabled by default.

	Virtualization support with Podman/Docker

Linux Kernel

	TSN support for Ethernet.

	New device tree overlay references for disabling optional population options of the SOM.

	Watchdog support

	GPIO FAN with pre-set thermal zone

	ADC channels are configured correctly

	RPMSG reserved memory regions enabled by default (previously enabled by device tree overlay)

U-Boot Bootloader

	EEPROM Hardware introspection enabled for identifying Ethernet PHY, SPI-NOR Flash, and RTC population options

	USB Host support

PHYTEC Meta Layer

This BSP release supports various configurations of the phyCORE-AM64x SOM and Development Kit, here is a summary of the Yocto MACHINE configuration support included in the PHYTEC Meta Layer for this release:

Yocto MACHINE Summary

	Yocto MACHINE

	Default Target Image

	Linux Distro

	Kit Part Number

	Compatible Modules

	U-Boot defconfig

	Linux defconfig

	Device Tree Files

	phyboard-electra-am64xx-2 (Default Kit - HS-FS Soc Variant)

	phytec-headless-image

	PHYTEC Ampliphy Reference Distribution

	KPB-07225-002.A0

	SOM: PCM-072-42F2DE11I.A0 Carrier Board: PBA-C-25.A1

 Quickstart

Quickstart

If you have just purchased a phyCORE-AM64x Development Kit, this Quickstart guide will help you boot your development kit into Linux and establish a serial console session with it.

[image: phyBOARD-Electra]

Basic Evaluation Requirements

Host system requirements are minimal for basic serial communication, and for the purposes of this Quickstart any modern computer could be used (Windows or Linux Host Machines).

Tip

This Quickstart will leverage pre-built software images in order to boot and communicate with the phyCORE-AM64x Development Kit. In order to re-build or introduce changes to the phyCORE-AM64x‘s Linux Board Support Package (BSP) a Linux Host Machine is required. A common and viable approach to satisfying this requirement is to install a Linux Virtual Machine onto a Windows computer. Further information such as the recommended Linux Distribution, RAM allocation and free disk space can be found in the Build the BSP guide.

Check the Board Configuration

The phyCORE-AM64x Development Kit should have been pre-configured during PHYTEC’s manufacturing process, but we will double check it together as an exercise:

	Taking care to avoid Electrostatic Discharge (ESD), press firmly down on the edges of the SOM to ensure that it is fully seated onto the Development Kit carrier board’s mating connectors. If evaluating multiple SOM configurations, this will be an important step to perform when swapping between SOMs.

	Ensure that an SD Card is inserted into the Development Kit’s SD Card slot. This SD Card was prepared with a pre-built software image and will boot your phyCORE-AM64x Development Kit into Linux.

Tip

The SD Card Booting Essentials guide explains how to re-create the bootable SD Card in the event that it is missing, corrupted or outdated.

	Check that the Boot Switch S10 is set to ON. S10 allows the Boot Switch Banks S3 and S4 to override the SOM’s default bootstrap settings.

	Check that the Boot Switch Banks S3 and S4 are set to boot the phyCORE-AM64x Development Kit from the SD Card:

SD Boot Settings

[image: SD Card Boot Switch] [image: phyBOARD-AM64 Close-up of Boot Switches]

Note

Board orientation is rotated for ease of viewing the Boot Switches.

Serial Communication Setup

	Using the provided micro-USB Serial Cable, connect the X20 Serial Debug Port of the phyCORE-AM64x Development Kit to an available USB port on your Host Machine.

Windows 10 Instructions

[image: phyBOARD-Electra]

Once the phyCORE-AM64x Development Kit is connected to your Windows Host Machine, you will need to determine the COM port in which the Linux serial console will be active on.

	Open your Windows Device Manager and expand the “Ports (COM & LPT)” section.

[image: Windows Device Manager]

	You should see two COM Ports provided by the phyCORE-AM64x Development Kit’s CP2105 USB to UART Bridge; one should be designated as “Enhanced” and the other “Standard”. You will need the COM Port Number for the “Enhanced” port in the following steps in order to establish serial communication with Linux running on the target hardware.

	The phyCORE-AM64x Development Kit configures two COM Ports; one for Linux running in the MAIN domain (Cortex-A53 compute cluster) of the AM6442 processor, and the other for the MCU domain (reserved for the real-time co-processors).

	Download and open the terminal emulator of your preference. There are many options freely available, such as PuTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html] and TeraTerm [https://github.com/TeraTermProject/teraterm/releases].

Tip

This guide will use TeraTerm. The User Interface of your terminal emulator will look slightly different depending on which you decide to use, but serial port settings will generally look the same in all terminal emulators.

	Create a New Connection using your preferred terminal emulator:

[image: Open a New Terminal Session]

	When prompted to configure the connection, specify the connection type as “Serial” and select the COM Port number found in the previous steps.

	Further setup of your serial connection is usually necessary in TeraTerm. Access the “Serial Port” settings in the “Setup” tab.

[image: Setup Serial Port]

	Configure the connection for 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control.

[image: Terminal Settings]

	Once you have an empty terminal session, your host system is effectively listening for console data over the COM port you selected. The documentation for the phyCORE-AM64x (outlined throughout this wiki) will generally refer to this serial session as the “Target (Linux)” console, as opposed to your Linux Host’s console.

Linux Instructions

Once the phyCORE-AM64x Development Kit is connected to your Linux Host Machine, the Development Kit’s CP2105 USB to UART Bridge will come up as two devices; /dev/ttyUSB0 and /dev/ttyUSB1.

	Open the serial connection with minicom (which you may need to install first).

host:~$ sudo apt-get update && sudo apt-get install minicom
host:~$ minicom -D /dev/ttyUSB0 -b 115200

	Alternative command ‘screen’ may also be used.

host:~$ sudo apt-get install screen
host:~$ screen /dev/ttyUSB0 115200

Note

If you have more than 1x USB serial device connected (this could be a second Development Kit, for example), you will have to determine which /dev/tty* device is specific to your target hardware (otherwise, you may connect to the wrong serial device). Some techniques for determining this include:

	Use dmesg to see which device connected most recently (dmesg will output all kernel messages and tail just limits this to the last 10 lines).

host:~$ sudo dmesg | tail

Scan the output for your serial device and you will see the specific device enumerator (/dev/tty*) that the kernel assigned to the device.

	Alternatively, use the following command to output all serial devices detected by the kernel at once:

host:~$ ls -l /dev/serial/by-id

The output will show which /dev/tty* device enumerator got assigned to each serial device and this has the added benefit of displaying some driver information associated with each device’s serial port. This can be helpful in determining which /dev/tty* file corresponds to which physical piece of hardware.

Power the Board

Using the included 12V/2A power supply, provide power to the phyCORE-AM64x Development Kit’s X5 Power Connector. The system will automatically boot once power is supplied and you should begin to see activity on the serial console. At the conclusion of the boot log, you should be presented with a Linux login prompt.

Expected Output

 ____ _ _ __ __ _____ _____ ____
| _ \ | | | |\ \ / /|_ _|| ____| / ___|
| |_) || |_| | \ V / | | | _| | |
| __/ | _ | | | | | | |___ | |___
|_| |_| |_| |_| |_| |_____| ____|

 _ __ __ ____ _ ___ ____ _ _ __ __
 / \ | \/ || _ \ | | |_ _|| _ \ | | | |\ \ / /
 / _ \ | |\/| || |_) || | | | | |_) || |_| | \ V /
 / ___ \ | | | || __/ | |___ | | | __/ | _ | | |
/_/ _\|_| |_||_| |_____||___||_| |_| |_| |_|

ampliPHY (Phytec Base Distribution) BSP-Yocto-Ampliphy-AM64x-PD23.2.1 phyboard-electra-am64xx-2 ttyS2

phyboard-electra-am64xx-2 login:

Login using “root” (no password is required).

Tip

You may find that commands and text in the terminal wrap over themselves if they extend too far on a single line in your terminal window. To improve usability and to prevent text from wrapping over itself use the following command once you have your window sized to your liking:

phyboard-electra-am64xx-2:~# shopt -s checkwinsize && resize

Safe Shutdown

Before removing power from the Development Kit, it is recommend to initiate a safe shutdown whenever possible. This will help to avoid issues such as filesystem corruption, which can prevent the hardware from booting up properly the next time it is needed.

	To initiate a shutdown run the following command:

phyboard-electra-am64xx-2:~# poweroff

	Once you see the “reboot: Power down” message it is safe to remove the power supply from the Development Kit.

Expected Output

[115.208115] systemd-shutdown[1]: Powering off.
[115.278661] reboot: Power down

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

 Interface Guides

Interface Guides

These interface guides provide steps for evaluating the peripheral interfaces supported by the phyCORE-AM64x development kit directly in Linux user-space. If an interface isn’t mentioned here but you expect the AM64x Soc to support it, it may be that the interface is supported by the SOM but not on the development kit.

	CAN

	EEPROM

	eMMC

	Ethernet

	Fan

	GPIO

	I2C

	JTAG

	miniPCIe

	OSPI Flash

	Power and Reset Buttons

	Power LEDs

	RTC

	SD Card

	SPI

	Thermal Zone

	TPM

	UART

	USB

 CAN

CAN

The phyCORE-AM64x SOM provides two Controller Area Network (MCAN) ports. Both interfaces support CAN and CAN FD (flexible data-rate) specifications, conforming with CAN protocol version 2.0 part A, B and ISO 11898-1:2015. The development kit breaks out both CAN0 and CAN1 interfaces to the X2 and X3 headers respectively for general purpose evaluation. This guide will walk-through the basic usage of this interface by transferring data to and from a host PC provisioned with PCAN-View Software. To learn more information about the phyCORE-AM64x CAN serial interface, please see section 7.1 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x CAN Location]

Requirements

	DB9 Male 2x5 to RS232 Female Cable (Included in development kit)

	PCAN-USB Adapter [https://phytools.com/collections/usb-interfaces/products/pcan-usb-adapter]

	CAN Cable [https://phytools.com/products/pcan-cable-2-w-120-ohm-termination]

	PCAN-View Software [https://phytools.com/products/pcan-view-free-can-software]

Setup the CAN Network

	Connect one of the D-sub 9 ribbon cables (included in development kit) to the CAN0 connector X2 (red line indicates Pin 1).

	Connect the PCAN-USB adapter to your host PC (USB port) and the D-sub 9 ribbon cable that is now attached to the CAN0 connector X2 on the development kit.

[image: CAN Connection Diagram]

Setup CAN software

	Open PCAN-View on your host PC and select the device from the available hardware. Set the Bit rate field to 1 Mbit/s and click OK.

Note

If you cannot find your device in the listed hardware, ensure that you have the correct driver installed on your host PC. You can obtain the driver here [https://www.peak-system.com/Drivers.523.0.html?&L=1].

	Using the phyCORE-AM64x Linux console, use the following commands to set up the CAN0 interface and configure the bit rate. The target device (the development kit) will need to reflect the same bit rate used by the host PC.

Target (Linux)

ip link set can0 down
ip link set can0 up type can bitrate 1000000
ip link set can0 up

Send CAN Messages

In this example you will test data transfers from the phyCORE-AM64x to the host PC.

	Make sure PCAN View is open on your host PC.

	Enter the following commands into the phyCORE-AM64x Linux console to send data on the CAN bus:

Target (Linux)

cansend can0 000#DE.AD.BE.EF.CA.FE.BA.BE

	In PCAN-View verify that the data is correct in the “Receive” window.

Receive CAN Messages

In this example you will test data traveling in the opposite direction, from the host PC to the phyCORE-AM64x.

	Enter the following command into the phyCORE-AM64x Linux console to put the CAN interface into listening mode:

Target (Linux)

candump can0

	On your host PC in PCAN-View, create a new transmit message. DEADBEEDCAFEBABE is the data (hex) used for this example:

[image: PCAN View Receive Example]

	Select the message. You can press the space-bar a few times to send the message more than once.

	In the phyCORE-AM64x Linux console, you should see that the message has been received:

Target (Linux)

root@phyboard-electra-am64xx-2:~# candump can0
can0 000 [8] DE AD BE ED CA FE BA BE

	To exit listening mode on the phyCORE-AM64x enter Ctrl + C to stop candump

 EEPROM

EEPROM

EEPROM stands for Electrically Erasable Programmable Read-Only Memory. It is a non-volatile memory that can be programmed and erased electrically. The nonvolatile memory available on the phyCORE-AM64x is a 32KB EEPROM with an I2C interface. It can be accessed through the I2C0 on the phyCORE-AM64x at address 0x50. EEPROM can be used to store configuration data or other general-purpose data. This guide will show you how to access the 2Kbit EEPROM featured on the phyCORE-AM64x development kit carrier board. To learn more information about the phyCORE-AM64x EEPROM system memory, please see section 6.1.2 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

Note

The phyCORE-AM64x development kit provides access to two EEPROMs, one 32Kbit EEPROM on the SOM and a 2Kbit EEPROM on the carrier board.

EEPROM

	Location

	Reference

	I2C Bus

	Address

	SOM

	U7

	i2c0

	0x50

	Carrier Board

	U61

	i2c1

	0x51

Verifying EEPROM Initialization

	First ensure that the EEPROM is initialized correctly by checking the boot log.

Target (Linux)

dmesg | grep -i "eeprom"

Expected Output

root@phyboard-electra-am64xx-2:~# dmesg | grep -i "eeprom"
[5.729717] at24 0-0050: 4096 byte 24c32 EEPROM, writable, 32 bytes/write
[5.766493] at24 1-0051: 256 byte 24c02 EEPROM, writable, 16 bytes/write

Writing to the EEPROM

	Clear out the entirety of the EEPROM by writing zeros to it.

Target (Linux)

dd if=/dev/zero of=/sys/bus/i2c/devices/1-0051/eeprom bs=256 count=1

Expected Output

root@phyboard-electra-am64xx-2:~# dd if=/dev/zero of=/sys/bus/i2c/devices/1-0051/eeprom bs=256 count=1
1+0 records in
1+0 records out
256 bytes copied, 0.0777177 s, 3.3 kB/s

	Now generate a 2Kbit file with random data. This will serve as the test file:

Target (Linux)

dd if=/dev/urandom of=/tmp/test.img bs=256 count=1

Expected Output

root@phyboard-electra-am64xx-2:~# dd if=/dev/urandom of=/tmp/test.img bs=256 count=1
1+0 records in
1+0 records out
256 bytes copied, 0.00022356 s, 1.1 MB/s

	Write the test file to the EEPROM

Target (Linux)

dd if=/tmp/test.img of=/sys/bus/i2c/devices/1-0051/eeprom bs=512 count=1

Expected Output

root@phyboard-electra-am64xx-2:~# dd if=/tmp/test.img of=/sys/bus/i2c/devices/1-0051/eeprom bs=256 count=1
0+1 records in
0+1 records out
256 bytes copied, 0.077697 s, 3.3 kB/s

Reading from EEPROM

	Read the contents of the EEPROM and store it to a file.

Target (Linux)

dd if=/sys/bus/i2c/devices/1-0051/eeprom of=/tmp/test_read.img bs=256 count=1

Expected Output

root@phyboard-electra-am64xx-2:~# dd if=/sys/bus/i2c/devices/1-0051/eeprom of=/tmp/test_read.img bs=256 count=1
1+0 records in
1+0 records out
256 bytes copied, 0.00670281 s, 38.2 kB/s

	Make sure the output file was not corrupted during the transfer using md5sum. Both of the files should have matching MD5 hashes.

Target (Linux)

md5sum /tmp/test.img /tmp/test_read.img

Expected Output

root@phyboard-electra-am64xx-2:~# md5sum /tmp/test.img /tmp/test_read.img
192e08b78bc0100bcff74d324d1ccbde /tmp/test.img
192e08b78bc0100bcff74d324d1ccbde /tmp/test_read.img

Reading/Writing to the SOM EEPROM

The SOM EEPROM is used for PHYTEC’s Hardware Introspection, which allows to automatically load the correct software for the underlying SOM configuration.

Do not modify the content. The BSP does not use the Hardware Introspection.

 eMMC

eMMC

An embedded Multi-Media Card (eMMC) flash device is populated on the phyCORE-AM64x SOM as a programmable nonvolatile storage. The eMMC flash is connected to the MMC0 8-bit interface of the phyCORE-AM64x which supports the JEDEC eMMC electrical standard v5.1. This guide will show how to view partition information, read from, and write to the eMMC featured on the phyCORE-AM64x SOM. To learn more information about the phyCORE-AM64x eMMC flash memory, please see section 6.1.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

Note

In order to follow this guide your phyCORE-AM64x development kit must be booting from SD card.

Viewing eMMC Partition Information

	You can verify the eMMC partitions by using the following command to list the partition information of known MMC devices:

Target (Linux)

fdisk -l

	The eMMC corresponds to /dev/mmcblk0 and the SD Card is /dev/mmcblk1 in the output.

Expected Output

root@phyboard-electra-am64xx-2:~# fdisk -l
Disk /dev/mmcblk1: 15 GB, 15931539456 bytes, 31116288 sectors
243096 cylinders, 4 heads, 32 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk1p1 * 16,0,1 1023,3,32 2048 264191 262144 128M c Win95 FAT32 (LBA)
/dev/mmcblk1p2 1023,3,32 1023,3,32 264192 1110165 845974 413M 83 Linux
Disk /dev/mmcblk0: 15 GB, 15913189376 bytes, 31080448 sectors
485632 cylinders, 4 heads, 16 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk0p1 0,1,1 1023,3,16 16 31080447 31080432 14.8G 83 Linux
Disk /dev/mmcblk0boot0: 31 MB, 33030144 bytes, 64512 sectors
1008 cylinders, 4 heads, 16 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Disk /dev/mmcblk0boot0 doesn't contain a valid partition table
Disk /dev/mmcblk0boot1: 31 MB, 33030144 bytes, 64512 sectors
1008 cylinders, 4 heads, 16 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Disk /dev/mmcblk0boot1 doesn't contain a valid partition table

	As can be seen in the above Example Output, this eMMC has not been formatted with a data partition, /dev/mmcblk0.
To follow the rest of this guide, one data partition will be required.

	If you did not see a /dev/mmcblk0p* partition refer to the following commands in order to create one:

Warning

Be careful using the “fdisk” command. If you aren’t careful, it can easily delete a partition of a flash device you didn’t intend to, and this could be your root filesystem! Just be sure to specify /dev/mmcblk0, not the SD card you are booting from.

Target (Linux)

fdisk /dev/mmcblk0

Enter into fdisk interactive session:
Use the following commands in order to create a Linux partition.

n # create new partition
p # partition type
1 # partition number
2048 # first sector
30777310 # last sector
t # change partition type
83 # linux filesystem
w # write changes

	Now reboot the system, you will see the eMMC device automatically mounted in the next steps of this guide.

Target (Linux)

reboot

Setup a Root Filesystem on the eMMC

In order to interact with the eMMC, the eMMC has to be partitioned and a rootfilesystem needs to be setup.

	Create a ext4 type root filesystem

Target (Linux)

mkfs.ext4 /dev/mmcblk0p1

Expected Output

root@phyboard-electra-am64xx-2:~# mkfs.ext4 /dev/mmcblk0p1
mke2fs 1.45.7 (28-Jan-2021)
Discarding device blocks: done
Creating filesystem with 3846907 4k blocks and 962880 inodes
Filesystem UUID: cd37c3b9-854c-4f48-8643-1e58443b0870
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

Mounting the eMMC

	Mount the eMMC to a volatile tmp folder

Target (Linux)

mkdir /tmp/emmc
mount /dev/mmcblk0p1 /tmp/emmc

Expected Output

root@phyboard-electra-am64xx-2:~# mount /dev/mmcblk0p1 /tmp/emmc
[151.633498] EXT4-fs (mmcblk0p1): mounted filesystem with ordered data mode. Opts: (null)

Writing to eMMC

	Create a test file.

Target (Linux)

echo "Hello World" > ~/test.txt

	Now you can use copy (cp) command to put this file on the eMMC.

Target (Linux)

cp test.txt /tmp/emmc

	Verify that the file was written to the eMMC.

Target (Linux)

ls /tmp/emmc

Expected Output

root@phyboard-electra-am64xx-2:~# ls /tmp/emmc
lost+found/ test.txt

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum test.txt /tmp/emmc/test.txt

Expected Output

root@phyboard-electra-am64xx-2:~# md5sum test.txt /tmp/emmc/test.txt
e59ff97941044f85df5297e1c302d260 test.txt
e59ff97941044f85df5297e1c302d260 /tmp/emmc/test.txt

Reading from the eMMC

	Use the copy (cp) or move (mv) command to put this file back onto your SD card.

Target (Linux)

cp /tmp/emmc/test.txt ~/test-READ.txt

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum /tmp/emmc/test.txt test-READ.txt

Expected Output

root@phyboard-electra-am64xx-2:~# md5sum /tmp/emmc/test.txt testREAD.txt
e59ff97941044f85d5297e1c302d260 /tmp/emmc/test.txt
e59ff97941044f85df5297e1c302d260 testREAD.txt

 Ethernet

Ethernet

The phyCORE-AM64x SOM brings out five external 10/100/1000 Mbps Ethernet ports (the AM64xx processor has six internal ethernet ports, but two share the same pins and can’t be used simultaneously, CPSW_RGMII2 and PRG1_RGMII2). One ethernet port is translated by a DP83867IRRGZ ethernet PHY into differential ethernet data pairs and supports 10-BASE-Te, 100BASE-TX, and 1000BASE-T protocols, while the other four are brought out as RGMII/RMII or MII through CPSW_RGMII1/2, PRG0_RGMII1/2 or PRG1_RGMII1/2.

The development kit provides three easy to access gigabit ethernet links that are provided via the ETH0, ETH1 and ETH2 RJ45 connectors on the phyCORE-AM64x development kit. This guide shows you how to connect and use these interfaces. To learn more information about the phyCORE-AM64x ethernet serial interface, please see section 7.2 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x Ethernet Connections]

Requirements

In order to follow this guide and exercise the networking capabilities of the phyCORE-AM64x, you will require the following:

	CAT5e cable (included with development kit)

	Network switch connected to a DHCP enabled network

[image: ../_images/ethernet-dhcp-diagram.png]

Establishing a Connection

If a valid connection between the phyCORE-AM64x development kit and a DHCP enabled network is made before boot-up then the phyCORE-AM64x will automatically negotiate a connection and will be assigned a unique IPv4 address.

	Once booted into Linux, you can try the following command to ping a host. We’ll ping google.com in this example:

Target (Linux)

ping google.com -c 10

Expected Output

root@phyboard-electra-am64xx-2:~# ping google.com -c 10
PING google.com (172.217.14.238): 56 data bytes
64 bytes from 172.217.14.238: seq=0 ttl=59 time=14.443 ms
64 bytes from 172.217.14.238: seq=1 ttl=59 time=14.408 ms
64 bytes from 172.217.14.238: seq=2 ttl=59 time=15.254 ms
64 bytes from 172.217.14.238: seq=3 ttl=59 time=14.340 ms
64 bytes from 172.217.14.238: seq=4 ttl=59 time=14.314 ms
64 bytes from 172.217.14.238: seq=5 ttl=59 time=13.420 ms
64 bytes from 172.217.14.238: seq=6 ttl=59 time=13.306 ms
64 bytes from 172.217.14.238: seq=7 ttl=59 time=18.276 ms
64 bytes from 172.217.14.238: seq=8 ttl=59 time=15.265 ms
64 bytes from 172.217.14.238: seq=9 ttl=59 time=16.178 ms

--- google.com ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 13.306/14.920/18.276 ms

Finding the phyCORE-AM64x’s IPv4 address

	To view the IP address assigned to your device’s network interfaces, use the following command:

Target (Linux)

ip addr

Expected Output

root@phyboard-electra-am64xx-2:~# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether ac:1f:0f:84:02:fc brd ff:ff:ff:ff:ff:ff
3: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can
4: can1: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can
5: eth1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether 1a:c6:45:51:c7:58 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::18c6:45ff:fe51:c758/64 scope link
 valid_lft forever preferred_lft forever
6: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether ca:74:6c:8d:53:d6 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.222 brd 10.0.0.255 scope global dynamic eth2
 valid_lft 86376sec preferred_lft 86376sec
 inet6 fe80::c874:6cff:fe8d:53d6/64 scope link
 valid_lft forever preferred_lft forever

	In the above example, we can see that ETH2 was assigned the IPv4 address 10.0.0.222 and the other ethernet interfaces should behave similarly.

Changing Static IPv4 Address to DHCP

Regularly the IPv4 address assigned to your device is a static one. This limits the devices abilities. Abilities such as being remote accessed into with SSH. The following steps will show how to change the IPv4 address from static to DHCP for ETH2.

	Edit the file /lib/systemd/network/10-eth2.network to edit ETH2.

Target (Linux)

vi /lib/systemd/network/10-eth2.network

	Change DHCP to equal “True” and remove the “Address=XXX.X.X.XXX” line.

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Expected Output

[Match]
Name=eth2

[Network]
DHCP=True

	Reboot the system.

Target (Linux)

reboot

	View the DHCP IPv4 address assigned to your device.

Target (Linux)

ip addr

SSH into the phyCORE-AM64x

Once the phyCORE-AM64x’s IPv4 address is known, we can use it to interact with the development kit over the network. This section of the guide will walk through establishing an SSH connection with the hardware which can be a handy way to quickly get a second terminal session up and running. This might be useful if you are doing development directly on the target and need to process a second task in parallel with something running in the standard hardware UART console.

	In order to most easily follow this section of the guide, you will want both the phyCORE-AM64x and your Ubuntu host machine connected to the same local area network (LAN).

Note

A Windows Command Prompt can be used instead of a Linux machine. Just skip the following update commands.

	Using your Ubuntu Host Machine, start a new Terminal session and use the following command to ensure that ssh is installed:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install ssh
sudo apt install net-tools

	The phyCORE-AM64x Linux BSP has a ssh server installed and enabled by default so it is already pre-configured to accept ssh connections. Establish a connection with the development kit using the Ubuntu host machine:

Host (Ubuntu)

ssh root@XXX.XXX.XXX.XXX

	The first time you SSH into the development kit you will probably be prompted to add the target to a list of known hosts:

Example Output

user@ubuntu:~$ ssh root@10.0.0.222
The authenticity of host '10.0.0.222 (10.0.0.222)' can't be established.
RSA key fingerprint is SHA256:J3LFEy36emULp5CpAjmgqPHAJdOJUYb+jGe4JbCMnsY.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.0.0.222' (RSA) to the list of known hosts.
 _____ _____ _ _
| _ |___ ___ ___ ___ | _ |___ ___ |_|___ ___| |_
	_	.'	.	.		__	_	.			-_	_	_				
__	__	_		__,	_	___		__		_		___	_		___	___	_
 |___| |___|

Arago Project http://arago-project.org

Arago (Phytec-TI Distribution + Package Management) 2020.09

root@phyboard-electra-am64xx-2:~#

Note

If you are having trouble establishing an SSH connection with the development kit:

	Double check that the development kit is actually connected to the network by pinging a known host such as google.com in the target console.

	Another common thing that trips up people is having a VPN enabled, which can cause your Host Machine to not find the phyCORE-AM64x target.

	A final place to troubleshoot network related issues between the phyCORE-AM64x and the Ubuntu Host Machine is the network adapter settings, especially if you are using a Virtual Machine to host Ubuntu. In VMWare Workstation, the Virtual Machine’s Network Adapter settings look like the following:

[image: ../_images/pb-07225_VMsetting.jpg]
The network setting will likely have NAT selected by default and this should work for most development tasks. Switching this to Bridged and replicating a physical connection can sometimes help resolve problems depending on what you are trying to do.

Feel free to reach out at PHYTEC’s Support Portal [http://support.phytec.com/] if you have any questions or concerns.

 Fan

Fan

The phyCORE-AM64x development kit provides fan connectivity via a 4-pin Hirose connector at X12 (VCC_5V0_SW rail). The fan is intended to be mounted directly to the processor heat sink for thermal management. The regulated 5V output is enabled by driving GPIO0_28 low (0), turning the fan on. When GPIO0_28 is pulled high (1), the 5V supplied to the fan connector will be turned off. This guide will demonstrate how to test your connections to the header x12. To learn more information about the phyCORE-AM64x thermal management and fan utilization, please see section 4.9 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x Fan Location]

Requirements

The phyCORE-AM64x development kit does not include a heat sink and fan. The below is the fan tested on the PHYTEC hardware:

	Item

	Description

	Link

	Heat Sink

	(29mmx29mmx9.5mm)

	Digikey link (heat sink) [https://www.digikey.com/en/products/detail/advanced-thermal-solutions-inc/ATS-55290D-C1-R0/1284984]

	Fan

	DC axial fan, 30mm square x 10mm

	Digikey link (fan) [https://www.digikey.com/en/products/detail/cui-devices/CFM-3010B-0130-373-22/16581921?utm_adgroup=DC%20Fans&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Fans%2C%20Thermal%20Management&utm_term=&utm_content=DC%20Fans&gclid=EAIaIQobChMIluH6iIfU-wIVEXxvBB08VAGPEAQYASABEgKKBfD_BwE]

	Female Connector

	4 pin keyed header

	Digikey link (female connector) [https://www.digikey.com/en/products/detail/hirose-electric-co-ltd/DF13-4S-1-25C/241750?utm_adgroup=Connectors%20%26%20Interconnects&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_RLSA&utm_term=&utm_content=Connectors%20%26%20Interconnects&gclid=EAIaIQobChMI57GD-6zU-wIV8G5vBB3k4A0ZEAAYAiAAEgLHL_D_BwE]

	Crimping Terminals

	4x crimping jackets

	Mouser link [https://www.mouser.com/ProductDetail/Hirose-Connector/DF13-2630SCF?qs=Ux3WWAnHpjA5SO9UIiadCA%3D%3D]

[image: phyCORE-AM64x (1566.1) Fan Schematic]

Recommended Header Configuration

	Pin

	Signal

	Wire Color

	1

	VCC_5V0_SW

	Red

	2

	GND

	Black

	3

	FAN_FG

	Yellow

	4

	PWM

	Blue

Connecting Your Fan

	Connect fan to the 4-pin Hirose connector located at X12.

[image: phyCORE-AM64x Fan Pin 1 Location]

Enabling the Overlay

	Power on the development kit and stop in U-boot.

	Load the device tree overlay required for exporting the GPIO signal that controls the fan and then boot the board.

Target (U-boot)

setenv overlays k3-am64-phyboard-electra-gpio-fan.dtbo
boot

Note

For more information about overlays see chapter Configuring the Bootloader.

	Verify that the “gpio-fan” was exported properly to gpio-453.

Target (Linux)

cat /sys/kernel/debug/gpio

Expected Output

 root@phyboard-electra-am64xx-2:~# cat /sys/kernel/debug/gpio
 gpiochip1: GPIOs 337-424, parent: platform/601000.gpio, 601000.gpio:
 gpio-355 (|PHY reset) out lo ACTIVE LOW
 gpio-356 (|PHY reset) out lo ACTIVE LOW
 gpio-379 (|wp) out lo
 gpio-380 (|spi1 CS1) out lo ACTIVE LOW

 gpiochip0: GPIOs 425-511, parent: platform/600000.gpio, 600000.gpio:
 gpio-437 (|green:heartbeat) out lo
 gpio-440 (|red:disk) out lo
 gpio-441 (|green:disk) out lo
 gpio-442 (|home) in lo
 gpio-446 (|menu) in lo
 gpio-453 (|gpio-fan) out lo ACTIVE LOW
 gpio-457 (|standby) out lo
 gpio-460 (|standby) out lo
 gpio-488 (|PHY reset) out lo ACTIVE LOW

Toggling the Fan

	Turn the fan ON.

Target (Linux)

echo 1 > /sys/class/thermal/cooling_device0/cur_state

Note

Run the command above 3-4 times to have the fan stay ON consistently.

	Turn the fan OFF.

Target (Linux)

echo 0 > /sys/class/thermal/cooling_device0/cur_state

 GPIO

GPIO

The General-Purpose Input/Output interfaces provides pins that can be configured as either inputs or outputs. Many of the signals available at the phyCORE-Connector can be multiplexed as GPIOs. The phyCORE-AM64x processor supports seven independent GPIO modules. To learn more information about the phyCORE-AM64x GPIO interface, please see section 9.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

Requirements

	M/M Jumper Wire [https://www.amazon.com/Solderless-Flexible-Breadboard-Jumper-100pcs/dp/B005TZJ0AM/ref=sr_1_10?crid=3HLIKV8GNFX3H&keywords=jumper%2Bwire&qid=1699400605&sprefix=jumper%2Bwire%2Caps%2C132&sr=8-10&th=1] Optional for Advanced Steps

Note

The expansion header was designed for 2mm pins. It is acceptable to use 2.54mm jumper pins during the development and verification of interfaces. The only issue arises when you switch back to plugging in a 2mm male header for an expansion board you created.

Using LEDs and Push buttons

This section of the guide will go over the use of the LEDs and Push buttons populated on the phyBOARD-Electra carrier board, see the User Interface section of the schematic for more information.

The GPIOs used here serve a dual purpose; before Linux is fully booted these GPIO signals are sampled at initial power-on and used to configure the behavior of the boot ROM (ie these signals boot strap the AM64x processor). In order to ensure that the push buttons do not interfere with the boot configuration, these signals are enabled via the OR gate (reference designator U79) automatically by the AM64x processor once the initial boot process is over.

These User Interface signals are all assigned to kernel drivers within the arch/arm64/boot/dts/ti/k3-am64xx-phyboard-electra.dtsi.

Toggling the User LED (D30)

The development kit has a user-configurable LED (D30) that is hooked up to the processor’s GPIO0_15.

GPIO0_15 is represented as gpio-438 in software. In the next section “GPIO Signal Naming” you’ll see that these GPIO signals are already allocated to name red:disk. This indicates that a driver has claimed this gpio, and this can be confirmed by checking the linux device tree. The driver is gpio-leds.

[image: phyCORE-AM64x LED 1 Location Close View]

	Let’s take a look at the sysfs interface that the gpio-leds driver are located in.

Target (Linux)

ls /sys/class/leds/

Target (Linux)

root@phyboard-electra-am64xx-2:~# ls /sys/class/leds
blue:user@ green:disk@ green:heartbeat@ green:user@ mmc0::@ mmc1::@ red:disk@ red:user@

	Let’s first turn ON the LED (it should be OFF by default):

Target (Linux)

echo 1 > /sys/class/leds/red\:disk/brightness

When the gpio-leds driver is attached to a PWM enabled pin, the brightness file will actually control the physical brightness of the pin and allow you to write values from 0 to 255 to do so. In this case, GPIO0_15 is not PWM capable pin and thus 0 corresponds to the LED being OFF and any other value sets the LED to ON.

	Turn OFF the LED

Target (Linux)

echo 0 > /sys/class/leds/red\:disk/brightness

	We can also leverage the driver to do more interesting things with the LED. Let’s configure the GPIO as a Linux heartbeat for example:

Target (Linux)

echo "heartbeat" > /sys/class/leds/red\:disk/trigger

	The heartbeat trigger can be turned OFF like so:

Target (Linux)

echo "none" > /sys/class/leds/red\:disk/trigger

The other LEDs on the development kit, LED2 (green:disk) and RGB (red:user, green:user, blue:user), can be controlled in the same way.

Reading the User Button (S7)

We can see in both the development kit schematic and in /sys/kernel/debug/gpio that GPIO0_17 is connected to the user button S7 and is represented in software as gpio-440 with the name “home”. We can see in the device tree that this GPIO is assigned to the gpio-keys driver.

[image: phyCORE-AM64x S7 & S8 Button]

	We can poll the state of this input GPIO just by reading /sys/kernel/debug/gpio like we already did above:

Target (Linux)

cat /sys/kernel/debug/gpio | grep home

Example Output

root@phyboard-electra-am64xx-2:~# cat /sys/kernel/debug/gpio | grep home
gpio-442 (|home) in lo

	Now try running that command again while holding down the S7 button:

Example Output

root@phyboard-electra-am64xx-2:~# cat /sys/kernel/debug/gpio | grep home
gpio-442 (|home) in hi

We can see that the pin goes from “lo” to “hi” when the button is pressed (note that the push button pulls the pin down… BUT the GPIO is configured as a ACTIVE_HIGH within the linux device tree which explains the seemingly reverse behavior).

	Another option for viewing button presses is to leverage the gpio-keys driver and the input events that it generates:

Target (Linux)

cat /dev/input/event0 | hexdump

With that above command running as an active process, try pushing the User buttons S7 and S8. You should see a large block of hexadecimal data printed to the screen for each button press.

Note

These blocks of data are input_event structures that identify the key code assigned to the GPIO (see the linux device tree), when the button press occurred, and the type of button press event that was generated (long press, single press, button release, etc). See Documentation/input/input.rst within the kernel source for more information.

	Enter Ctrl + C to end the process and resume control of the console.

GPIO Signal Naming

The GPIO pin numbering of the phyCORE-AM64x schematic is represented differently from the device identifier used by the kernel. Therefore in GPIO hardware signal naming convention looks very different from the software GPIO naming convention. This section will walk through how to calcualte the GPIO signals and shoe how to identify which GPIO signals are in use on the developmeny kit.

Active GPIO Signals

	See which GPIO signals have been allocated by running the following command.

Target (Linux)

cat /sys/kernel/debug/gpio

Example Output

root@phyboard-electra-am64xx-2:~# cat /sys/kernel/debug/gpio
gpiochip1: GPIOs 337-424, parent: platform/601000.gpio, 601000.gpio:
gpio-355 (|PHY reset) out lo ACTIVE LOW
gpio-356 (|PHY reset) out lo ACTIVE LOW
gpio-379 (|wp) out lo
gpio-380 (|spi1 CS1) out lo ACTIVE LOW

gpiochip0: GPIOs 425-511, parent: platform/600000.gpio, 600000.gpio:
gpio-437 (|green:heartbeat) out lo
gpio-440 (|red:disk) out lo
gpio-441 (|green:disk) out lo
gpio-442 (|home) in lo
gpio-446 (|menu) in lo
gpio-451 (|sysfs) out lo
gpio-453 (|gpio-fan) out lo ACTIVE LOW
gpio-457 (|standby) out lo
gpio-460 (|standby) out lo
gpio-488 (|PHY reset) out lo ACTIVE LOW

GPIO and gpiochip

	GPIO SOC Modules

	GPIO Hardware Signal

	Section

	gpiochip1

	GPIO1

	337-424

	gpiochip0

	GPIO0

	425-511

Note

If a gpio instance is listed in that above /sys/kernel/debug/gpio file it means that it is tied to an active kernel driver. If this is the case, you shouldn’t not attempt to control the gpio unless using the appropriate userspace tools, provided by the hardware driver. This guide will outline the control of gpios both tied to a kernel driver and those that are unused, left in reset.

Note gpio-453 will appear when the fan device tree overlay is active. Please see the Fan guide for more information.

Calculating GPIO Signal Names

This section of the guide will walk through how to figure out the hardware signal name and the corresponding SOC GPIO signal name.

Hardware to Software

	Using the development kit’s carrier board and SOM schematics the hardware GPIO signal GPIO0_15 (LED1) at SOM connector D3 pin.

	See which GPIO signals have been allocated by running the following command.

Target (Linux)

cat /sys/kernel/debug/gpio

Expected Output

 root@phyboard-electra-am64xx-2:~# cat /sys/kernel/debug/gpio
 gpiochip1: GPIOs 337-424, parent: platform/601000.gpio, 601000.gpio:
 gpio-355 (|PHY reset) out lo ACTIVE LOW
 gpio-356 (|PHY reset) out lo ACTIVE LOW
 gpio-379 (|wp) out lo
 gpio-380 (|spi1 CS1) out lo ACTIVE LOW

 gpiochip0: GPIOs 425-511, parent: platform/600000.gpio, 600000.gpio:
 gpio-437 (|green:heartbeat) out lo
 gpio-440 (|red:disk) out lo
 gpio-441 (|green:disk) out lo
 gpio-442 (|home) in lo
 gpio-446 (|menu) in lo
 gpio-451 (|sysfs) out lo
 gpio-453 (|sysfs) in lo
 gpio-457 (|standby) out lo
 gpio-460 (|standby) out lo
 gpio-488 (|PHY reset) out lo ACTIVE LOW

	Looking at the section “gpiochip0”, since it translates to GPIO0, you can see the first software GPIO signal is gpio-425 for GPIO0. By adding 425 and the hardware signal(GPIO0_15) together the proper software singal name can be found.

425+15 = 440

	Now you know that gpio-440 (software) is GPIO0_15 (hardware).

Software to Hardware

	In order to figure out which hardware GPIO signals are already allocated simply subtract the software GPIO singal from the GPIO bank starting section.

	Find the GPIO bank section by running the following command on the development kit.

Target (Linux)

cat /sys/kernel/debug/gpio

	The GPIO0 bank correlates gpiochip1 which starts at gpio-425. To find which hardware GPIO signal led1 corresponds to gpio-440, subtract gpio-440 from the start of the GPIO bank (gpio-425).

440-425 = 15

	Now you know that gpio-440 (software) is GPIO0_15 (hardware).

Advanced GPIO Control

Export and Control a Input GPIO

Thus far in this guide we have gone over the control of GPIOs assigned to specific gpio-X drivers within the kernel, now let’s look into exporting and controlling unused GPIOs. For this guide we will target GPIO0_18 which is brought out to pin 8 of the X27 expansion connector.

[image: phyCORE-AM64x x27 Expansion Connector]

	First, convert the hardware resource GPIO0_18 into it’s software representation. We should come up with GPIO0_18 = gpio-443 in Linux.

	Export this GPIO in the kernel:

Target (Linux)

echo 443 > /sys/class/gpio/export

This will create a new sysfs directory /sys/class/gpio/gpio443 (note that this step will not work for GPIOs already reserved by a driver).

	Let’s navigate into the new directory and take a look around:

Target (Linux)

cd /sys/class/gpio/gpio443
ls

Expected Output

root@phyboard-electra-am64xx-2:gpio443# ls
device@ power/ subsystem@ active_low direction edge uevent value

	Similar to the features exposed by the gpio-leds driver outlined above in this guide, exporting GPIOs within sysfs creates a directory full of files that enable us to control the GPIO from userspace. We can check the current configuration of the GPIO interface by reading some of these files:

Target (Linux)

cat direction
cat value
cat active_low

Expected Output

root@phyboard-electra-am64xx-2:gpio443# cat direction
in
root@phyboard-electra-am64xx-2:gpio443# cat value
1
root@phyboard-electra-am64xx-2:gpio443# cat active_low
0

We can see that by default, the GPIO is exported as an active_high input.

	You could go ahead and short GPIO0_18 (pin 8 of X27) to GND (pin 4 of X27) to simulate a button press and at the same time read the value file to see it go from 1 to 0.

Export and Control a Output GPIO

Let’s take a closer look at this GPIO:

	In order to fully control GPIOs, we will need to have a understanding of the way the AM64x processor is designed at the silicon level. The AM64x processor has many subsystems within it while having a limited number of processor pads to bring out signals to and enable hardware interfaces on (such as USB, mPCIe, GPIOs, etc). These various hardware subsystems share processor pins and the processor pins have to be configured for the signal you want to access.
This is a process called pin multiplexing (or just pin muxing) and is the reason that you won’t ever be able to bring out every feature the AM64x processor has to offer all at the same time (you have to make decisions regarding which interfaces are critical to your application and design and ensure they can all come out, without conflicting).

	Since we are ultimately trying to control the GPMC0_AD3 processor pad (this is the processor pin that brings out GPIO0_18 in the phyCORE-AM64x development kit schematic) lets look this up in the processor datasheet [https://www.ti.com/lit/ds/symlink/am6411.pdf?ts=1682685060544&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAM6411]:

[image: phyCORE-AM64x Processor Datasheet]
Here we can confirm the processor pin (often referred to as a processor ball, or pad as well) is number U20 (which should agree with the SOM schematic), the pad’s config register’s name is PADCONFIG18, the pad config register address is 0x000F4048, and the mux mode we want for GPIO0_18 is 7.

	Let’s take a look at the pad config on the development kit:

Target (Linux)

devmem2 0x000F4048

Expected Output

root@phyboard-electra-am64xx-2:gpio443# devmem2 0x000F4048
/dev/mem opened.
Memory mapped at address 0xffffaed22000.
Read at address 0x000F4048 (0xffffaed22048): 0x00254007
The 0x000F4048 memory address contained the data 0x00254007.

	A handy trick to decode that hexadecimal output is to use your Windows Host Machine’s Calculator App and setting it to Programmer mode.

[image: phyCORE-AM64x GPIO Calculator]
We can use the bit toggling keypad to view the individual bits that are set, as well as change them easily.

	Next, lookup PADCONFIG18 within the AM64x processor Technical Reference Manual (TRM) [https://www.ti.com/lit/ug/spruim2f/spruim2f.pdf?ts=1682669110466&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAM6442] from Texas Instruments. You should find the following table breaking down what each bit within the pad config register means:

[image: Texas Instrument's AM64x Pad Configuration]

	Looking at the data stored in 0x000F4048 alongside the TRM’s Table 5-77, we can see that the processor pin is in its reset state (or default state) 0x00254007. This can be interpreted as follows:

	TX (transmit) Driver Disabled

	RX (receiver) Driver Enabled

	Internal Pull Down Selected

	Internal Pull Down Enabled

	Schmitt Trigger Input Enabled

	Mux Mode 7

	We can see that the processor pin by default is sitting in a state that makes it very convenient for us to export the GPIO and use it as an input in Linux.

In order for us to configure GPIO0_18 as an output, we’ll need to modify the GPIO in the kernel AND modify the processor’s pad config!

	First, let’s mux the processor pad to function as a output GPIO0_18. We’ll want to set 0x000F4048 to reflect the following to do this (other options such as the internal pull up/down resistors could be optionally enabled depending on your needs):

	Tx (transmit) Driver Enabled

	Rx (receiver) Driver Disabled

	Mux Mode 7: This will correspond to the value 0x00010007.

	Write the value 0x00010007 to PADCONFIG18:

Target (Linux)

devmem2 0x000F4048 w 0x00010007

Now our pin is properly configured to function as an output (for driving an LED for example).

	Next, we need to configure the kernel to use this pin as a output:

Target (Linux)

echo out > direction

	With both the kernel and hardware interface properly configured as an output, we can now successfully drive the pin:

Target (Linux)

echo 1 > value
echo 0 > value

 I2C

I2C

The Inter-Integrated Circuit (I2C) interface is a two-wire, bidirectional serial bus that provides a simple and efficient method for data exchange among devices. The phyCORE-AM64x SOM provides six independent multimaster fast-mode I2C modules. Aside from I2C0, which has pullups on the SOM, all the I2C signals require pullups in your custom carrier board design. This guide will show you how to test the I2C interface on the phyCORE-AM64x development kit. To learn more information about the phyCORE-AM64x Inter-Integrated Circuit (I2C) interface, please see section 7.4 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

Note

The AM64x processor supports up to 6x I2C interfaces. Only two of these are supported on the phyCORE-AM64x development kit by default but others can be enabled via pin multiplexing.

I2C Settings

	Hardware Interface

	sysfs Path

	I2C0

	/dev/i2c-0

	I2C1

	/dev/i2c-1

Requirements

	M/M Jumper Wire [https://www.amazon.com/Solderless-Flexible-Breadboard-Jumper-100pcs/dp/B005TZJ0AM/ref=sr_1_10?crid=3HLIKV8GNFX3H&keywords=jumper%2Bwire&qid=1699400605&sprefix=jumper%2Bwire%2Caps%2C132&sr=8-10&th=1]

Note

The expansion header was designed for 2mm pins. It is acceptable to use 2.54mm jumper pins during the development and verification of interfaces. The only issue arises when you switch back to plugging in a 2mm male header for an expansion board you created.

	I2C device (Accelerometer [https://www.sparkfun.com/products/12589])

Connecting Your I2C Device

Connecting I2C Pin Names

	I2C Device Pin

	Carrier Board Signal

	Carrier Board Connector - Pin

	VCC

	VCC_5V0_SW

	X27 - Pin 2

	GND

	GND

	X27 - Pin 9

	SDA

	X_I2C1_SDA

	X27 - Pin 11

	SCL

	X_I2C1_SCL

	X27 - Pin 13

[image: phyCORE-AM64x I2C x27 Pins Location]

Using I2C1

	Power on the development kit and boot into Linux.

	List the available I2C devices. There will be a few devices that appear in /dev/ and each is a different I2C interface.

Target (Linux)

ls /dev/i2c*

Expected Output

root@phyboard-electra-am64xx-2:~# ls /dev/i2c*
/dev/i2c-0 /dev/i2c-1

	List all the I2C busses in the system.

The i2c-tools package contains a heterogeneous set of I2C tools to interact with I2C slave devices from userspace. BSP images have i2c-tools packaged by default

Target (Linux)

i2cdetect -l

Expected Output

root@phyboard-electra-am64xx-2:~# i2cdetect -l
i2c-0 i2c OMAP I2C adapter I2C adapter
i2c-1 i2c OMAP I2C adapter I2C adapter

	Use the “i2cdetect” command to scan the I2C1 bus for devices. This command outputs the address of all devices on the I2C1 bus.

Target (Linux)

i2cdetect -y -r 1

Expected Output

root@phyboard-electra-am64xx-2:~# i2cdetect -y -r 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- UU -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- UU -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Note

UU indicates that the device with that particular address is tied to a kernel driver and you will be unable to communicate with the device via i2c commands (i2cset and i2cget).

The detected interfaces should match with the devices connected to I2C1 on the development kit.

Devices Connected to I2C1

	Interface

	Address (7-bit)

	EEPROM

	0x51

	PCA9533D RGB LED Driver

	0x62

Connecting the Accelerometer

	Now ‘poweroff’ the development kit and connect up the accelerometer before booting the kit back into Linux.

Target (Linux)

poweroff

Connecting I2C Pin Names

	I2C Device Pin

	Carrier Board Signal

	Carrier Board Connector - Pin

	VCC

	VCC_5V0_SW

	X27 - Pin 2

	GND

	GND

	X27 - Pin 9

	SDA

	X_I2C1_SDA

	X27 - Pin 11

	SCL

	X_I2C1_SCL

	X27 - Pin 13

[image: phyCORE-AM64x I2C x27 Pins Location]

	If you run the same i2cdetect command you should be able to confirm that a new device has appeared on the I2C1 bus:

Target (Linux)

i2cdetect -y -r 1

Expected Output

root@phyboard-electra-am64xx-2:~# i2cdetect -y -r 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- 1d -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- UU -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- UU -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Since the accelerometer was simply attached to the bus without any knowledge of it having been provisioned into the Linux device tree the device address comes up as its true address 0x1d as opposed to ‘UU’. This means we can interact with it directly in userspace using the i2cget and i2cset utilities, check out the following userspace driver for bump detection!

Bump Detect Userspace Driver

	Open a text editor to write a script:

Target (Linux)

cd ~
vi ./bumpDetect.sh

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

	Enter the following into the text editor and save the file:

bumpDetect.sh

#!/bin/bash

echo Input Sparkfun RedBot-Accelerometer bus:
read -r bus
echo Input Sparkfun RedBot-Accelerometer address:
read -r addy

 #This stuff all comes from the MMA8452Q accelerometer datasheet
i2cset -y "$bus" "$addy" 0x2B 0x40 #Reset the accelerometer
i2cset -y "$bus" "$addy" 0x0E 0x02 #Set dynamic range to 8g from default 2g
i2cset -y "$bus" "$addy" 0x2A 0x05 #Enable the device

#Constantly check if there is any change in acceleration in the Z axis
state=$(i2cget -y "$bus" "$addy" 0x05)

while true; do
 temp=$(i2cget -y "$bus" "$addy" 0x05)
 if ["$state" != "$temp"];
 then
 echo Bump!
 usleep 200000
 state=$(i2cget -y "$bus" "$addy" 0x05)
 fi
done

	Change the permissions such that you can execute the script:

Target (Linux)

chmod +x ./bumpDetect.sh

	Now run the script:

Target (Linux)

./bumpDetect.sh

	When prompted, enter the bus you connected the device to (which was I2C1) and the address found earlier (the kernel represented this bus as /dev/i2c-1). Both must be given in hexidecimal form!

Example

root@phyboard-electra-am64xx-2:~# ./bumpDetect.sh
Input Sparkfun RedBot-Accelerometer bus:
0x01
Input Sparkfun RedBot-Accelerometer address:
0x1D

	With the accelerometer resting on the table surface, try tapping the table surface!

The accelerometer is pretty sensitive so you should be able to tap the table anywhere, and very lightly, to get a bump to register (Note that the example is only polling the Z axis, so tapping the sides of the table will probably not register a bump).

Example Output

root@phyboard-electra-am64xx-2:~# ./bumpDetect.sh
Input Sparkfun RedBot-Accelerometer bus:
0x01
Input Sparkfun RedBot-Accelerometer address:
0x1D
Bump!
Bump!
Bump!
Bump!
Bump!

 JTAG

JTAG

There is one JTAG interface on the phyCORE-AM64x SOM that is broken out to three different locations on the phyBOARD-Electra. This guide which will show you how to connect to and verify the onboard XDS110 JTAG debugger via a Connection Integrity Test executed using TI’s Code Composer Studio IDE. To learn more information about the phyCORE-AM64x JTAG debug interface, please see section 10.1 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x JTAG Connectors]

JTAG Headers

	Location

	Header Type

	Notes

	X21

	micro-USB

	XDS110 JTAG debugger

	X22

	Compact TI 20-Pin JTAG Header

	Requires external JTAG debugger

	X27

	60-pin Expansion Connector

	Requires external JTAG debugger

Requirements

	USB micro-AB Cable (Included in development kit)

	Code Composer Studio IDE [https://www.ti.com/tool/CCSTUDIO]

Development Kit Setup

	Power off the development kit and disconnect power.

Target (Linux)

poweroff

	Set the boot switches to the following “NO BOOT” boot mode.

S10 should be ON

[image: phyCORE-AM64x JTAG No Boot Boot-Switches]
[image: phyCORE-AM64x XDS110 JTAG]

	Connect the USB Micro-AB cable to the X21 JTAG connector and reconnect the power supply to the development kit.

	Confirm that you do not see any new boot messages on the serial console.

Host Setup

	Download the latest CCSTUDIO installer for your Windows host machine.

Note

You could install this for your Linux VM however it is recommended to install this into the native OS of your Host Machine to avoid dealing with USB pass through related issues. PHYTEC generally runs native Windows machines and then hosts Linux build systems as a VM or on remote servers.

	Unzip the installer archive and run the installer.

	As you work through the installer prompts:

	Select the Custom Installation Setup Type:

[image: CCS setup]

	When prompted to Select Components, enable Sitara AM3x, AM4x, AM5x and AM6x MPUs.

[image: ../_images/pb-07225_addsitarra_jtag.png]

	When prompted to Install debug probes, ensure that the Spectrum Digital Debug Probes and Boards option is selected (should be done by default but will depend on the version CCS being installed):

[image: ../_images/pb-07225_debuggers_jtag.png]

	Complete installation and then launch Code Composer Studio.

Warning

Refer to these if you find that you need to recover/update the firmware on the debugger.

The phyCORE-AM64x development comes equipped with a on-board XDS110 USB debug probe that enables the AM64x processor’s JTAG interface. To update the JTAG debugger, follow these steps to do so once you have Code Composer Studio installed:

	Open your Windows host machine’s command prompt (this can be done by hitting the Windows key, typing CMD, and then hitting enter).

	Navigate to the directory in which Code Composer Studio was installed (by default this should be C:\ti\ccs1210, or similiar depending on the version of CCS you are working with).

Host (Windows)

cd C:\ti\ccs1210

	Navigate to the USCIF driver’s xds110 directory:

Host (Windows)

cd ccs\ccs_base\common\uscif\xds110

	Ensure that your Windows host machine has a valid connection with the phyCORE-AM64x development kit’s X21 USB micro-AB port.

	Scan the USB bus for supported XDS110 devices:

Host (Windows)

xdsdfu.exe -e

Expected Output

C:\ti\ccs1210\ccs\ccs_base\common\uscif\xds110>xdsdfu.exe -e

USB Device Firmware Upgrade Utility
Copyright (c) 2008-2019 Texas Instruments Incorporated. All rights reserved.

Scanning USB buses for supported XDS110 devices...

<<<< Device 0 >>>>

VID: 0x1cbe PID: 0x00ff
Device Name: Tiva Device Firmware Update
Manufacturer: Texas Instruments Incorporated
Serial Num: 00000000
Mode: DFU

Found 1 device.

	Ensure that the JTAG device on the development kit is found during the scan.

	Set the debugger to DFU (Device Firmware Upgrade) mode in case it isn’t there by default:

Host (Windows)

xdsdfu.exe -m

Expected Output

C:\ti\ccs1210\ccs\ccs_base\common\uscif\xds110>xdsdfu.exe -m

USB Device Firmware Upgrade Utility
Copyright (c) 2008-2019 Texas Instruments Incorporated. All rights reserved.

Scanning USB buses for supported XDS110 devices...

Device is already in DFU mode. No switch necessary.

	Flash a fresh bootloader to the XDS110 Debugger:

Host (Windows)

xdsdfu -b boot_loader.bin -r

Expected Output

C:\ti\ccs1210\ccs\ccs_base\common\uscif\xds110>xdsdfu -b boot_loader.bin -r

USB Device Firmware Upgrade Utility
Copyright (c) 2008-2019 Texas Instruments Incorporated. All rights reserved.

Replacing the bootloader may render the XDS110 unusable.
Do you want to continue (Y/N) ? Y
Scanning USB buses for supported XDS110 devices...

Downloading boot_loader.bin to device...

	Double check that your debugger is still in DFU mode (this may be the case but it doesn’t hurt):

Host (Windows)

xdsdfu -m

	Flash the debugger firmware (note that the firmware version may be different depending on the version of CCS you are working with):

Host (Windows)

xdsdfu.exe -f firmware_3.0.0.22.bin -r

Expected Output

C:\ti\ccs1210\ccs\ccs_base\common\uscif\xds110>xdsdfu.exe -f firmware_3.0.0.22.bin -r

USB Device Firmware Upgrade Utility
Copyright (c) 2008-2019 Texas Instruments Incorporated. All rights reserved.

Scanning USB buses for supported XDS110 devices...

Downloading firmware_3.0.0.22.bin to device...

	Once complete, disconnect the USB cable from the X21 JTAG connector and then re-connect it. This is necessary in order to prevent a known problem that can occur on the first JTAG integrity scan in the following steps.

	The XDS110 debugger should be good to go now. This can be verified by opening your Windows “Device Manager” and confirming that the X21 COM port displays as “XDS110 Class”.

[image: ../_images/pb-07225_jtag_reflashing-verification.jpg]

Note

The following Workspace location is just an example, the default location for you will probably reflect the user you are logged in as.

	Create a new workspace (it is recommended to choose a workspace directory without any spaces in the path, we at PHYTEC have experienced issues with the Sitara SDKs when it comes to their build scripts and spaces in paths).

[image: ../_images/pb-07225_newworkspace_jtag.png]

	Once CCS has launched navigate to View → Target Configurations.

	Right-click inside the Target Configurations pane and select New Target Configuration.

	Name the configuration AM64x_XDS110_USB.ccxml.

[image: ../_images/pb-07225_newtargetconfig_jtag.png]

	Set the connection to Texas Instruments XDS110 USB Debug Probe and the Device to AM64x.

[image: ../_images/pb-07225_setuptargetconfig_jtag.png]

	Hit the Save Configuration button.

	Now you can hit the Test Connection button. You should see a few tests run and complete successfully, including a reset of the processor and integrity scans.

[image: ../_images/pb-07225_successfull-test_jtag.jpg]

 miniPCIe

miniPCIe

The PCI Express (PCIe) interface of the phyCORE-AM64x SOM provides PCIe Gen. 2.0 (1-lane) functionality. Furthermore, the interface is backwards compatible to the Gen1 specification. This guide will show you how to do a basic functional test of the miniPCIe interface on the phyCORE-AM64x development kit. To learn more information about the phyCORE-AM64x PCIe interface, please see section 7.5 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x miniPCIe Connector]

Warning

The USB super speed signals are muxed between the miniPCIe interface and the USB HUB. Enabling miniPCIe will disable USB3.0 speeds at the stacked type-A USB connector but USB2.0 speeds will still be available.

Requirements

	HINYSENO Mini PCI Express Single Port RJ45 Ethernet 10/100/1000Mbps Gigabit LAN Card

Development Kit Setup

	First, ‘poweroff’ the development kit.

Target (Linux)

poweroff

	With the power removed, insert the miniPCIe adapter into the development kit’s miniPCIe slot.

It is recommended to use some hardware to secure the miniPCIe card to the development kit carrier board. A small M2 bolt and nut should do the trick.

	Power on the development kit and stop in U-Boot when prompted.

	Enable the miniPCIe device tree overlay (this overlay will enable the miniPCIe slot, but at the same time disable the USB HUB’s superspeed support).

Target (U-Boot)

setenv overlays k3-am64-phyboard-electra-pcie-usb2.dtbo
boot

Note

For more information about overlays see chapter Configuring the Bootloader.

Confirming Mini PCIe Connection

	Once booted into Linux, confirm that the PCIe card was detected.

Target (Linux)

lspci

Expected Output

root@phyboard-electra-am64xx-2:~# lspci
00:00.0 PCI bridge: Texas Instruments Device b010
01:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection

	Confirm that there is a new network interface called enp1s0:

Target (Linux)

ip address

Expected Output

root@phyboard-electra-am64xx-2:~# ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether ac:1f:0f:84:02:fc brd ff:ff:ff:ff:ff:ff
3: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can
4: can1: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can
5: eth1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether 1a:c6:45:51:c7:58 brd ff:ff:ff:ff:ff:ff
6: eth2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether ca:74:6c:8d:53:d6 brd ff:ff:ff:ff:ff:ff
7. enp1s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether ac:1f:0f:84:22:ff brd ff:ff:ff:ff:ff:ff

	If you connect the miniPCIe adapter to a DHCP enabled Local Area Network, you should find that you are automatically assigned a valid IP address:

Expected Output

root@phyboard-electra-am64xx-2:~# ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether ac:1f:0f:84:02:fc brd ff:ff:ff:ff:ff:ff
3: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can
4: can1: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can
5: eth1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether 1a:c6:45:51:c7:58 brd ff:ff:ff:ff:ff:ff
6: eth2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether ca:74:6c:8d:53:d6 brd ff:ff:ff:ff:ff:ff
7. enp1s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether ac:1f:0f:84:22:ff brd ff:ff:ff:ff:ff:ff
 inet 102.0.0.22/24 brd 102.0.0.224 scope global enp1s0
 valid_lft forever preferred_lft forever

	The IPv4 address assigned to the development kit in the above example output is 102.0.0.22 .

	To test your network connection, ping a known host:

Target (Linux)

ping google.com

Disable the Device Tree Overlay

	Once done evaluating miniPCIe (maybe you want USB superspeed capability back), do the following to disable the device tree overlay we enabled at the beginning of this guide:

	Reboot the board:

Target (Linux)

reboot

	Once prompted, stop in U-Boot.

	Issue the following U-Boot commands to restore the boot environment back to its factory settings:

Target (U-Boot)

env default -f -a
saveenv
boot

 OSPI Flash

OSPI Flash

An Octal Serial Peripheral Interface (OSPI) Flash is populated on the SOM as a programmable nonvolatile storage. The OSPI interface supports single, dual, quad, or octal read/write access to the flash device. This guide will walk through how to read and write from the OSPI. The OSPI Flash can be used for a fast boot source, see the guide Flashing the SPI NOR Flash for more on booting from OSPI. For more information on the OSPI interface, see section 6.1.4 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

View Available NOR Partitions

	Verify that the NOR interface was initialized properly.

Target (Linux)

mtdinfo

Expected Output

Count of MTD devices: 1
Present MTD devices: mtd0
Sysfs interface supported: yes

	View basic partition information.

Target (Linux)

cat /proc/mtd

Expected Output

dev: size erasesize name
mtd0: 04000000 00020000 "fc40000.spi.0"

	More detailed information can be viewed using the “mtdinfo” command on a specific partition.

Target (Linux)

mtdinfo /dev/mtd0

Expected Output

mtd0
Name: fc40000.spi.0
Type: nor
Eraseblock size: 131072 bytes, 128.0 KiB
Amount of eraseblocks: 512 (67108864 bytes, 64.0 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false
Device is writable: true

Write to OSPI

	Create a random file equal to the size of the /dev/mtd0 partition (512 kBytes).

Target (Linux)

dd if=/dev/urandom of=test.dat bs=1k count=512

Expected Output

512+0 records in
512+0 records out
524288 bytes (524 kB, 512 KiB) copied, 0.0152006 s, 34.5 MB/s

	Copy the generated file to the mtd0 partition.

Target (Linux)

flashcp -v test.dat /dev/mtd0

Expected Output

Erasing blocks: 4/4 (100%)
Writing data: 512k/512k (100%)
Verifying data: 512k/512k (100%)

Read from OSPI

	Dump the contents of /dev/mtd0 partition to a new file:

Target (Linux)

dd if=/dev/mtd0 of=read.dat bs=1k count=512

Expected Output

512+0 records in
512+0 records out
524288 bytes (524 kB, 512 KiB) copied, 0.167633 s, 3.1 MB/s

	Verify that the output files were not corrupted during the transfer using md5sum.

Target (Linux)

md5sum test.dat read.dat

Expected Output

3497f295076c7ef96443b109ab9be333 test.dat
3497f295076c7ef96443b109ab9be333 read.dat

 Power and Reset Buttons

Power and Reset Buttons

The phyCORE-AM64x development kit is provided a selection of buttons to perform power related functions. To learn more information about the phyCORE-AM64x reset interfaces, please see section 5.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x Power and Reset Buttons]

Button Functions

	Button

	Description

	S5

	Cold Reset

	MCU Domain Cold Reset

	S6

	Warm Reset

	MCU and Main Domain Warm Reset

	S9

	System Controller

	Hard power down with long press

	Power up if system powered down

 Power LEDs

Power LEDs

The phyCORE-AM64x Carrier Board has three green LEDs and one red LED which indicates the presence of power on the various supply rails available. These LEDs are not user programmable and are present for hardware debugging purposes only.

[image: phyCORE-AM64x Power LEDs]
The table below lists the LEDs and information about their corresponding power rails.

Boot Settings

	Reference Designator

	Description

	D22

	VCC_3V3 Power Rail Indicator: The switching regulator (U90) powers the VCC_3V3 supply rail which powers the peripheral load switch (U68).

	D23

	VCC_3V3_SW Power Rail Indicator: The load switch (U68) powers the VCC_3V3_SW supply rail which powers the various 3V3 accessory circuits on the Carrier Board.

	D26

	VCC_5V0_MAIN Power Rail Indicator: The switching regulator (U88) powers the VCC_5V0_MAIN supply rail which powers the peripheral load switch (U69) as well as providing power to the SOM.

	D24

	VCC_5V0_SW Power Rail Indicator: The load switch (U69) powers the VCC_5V0_SW supply rail which powers the various 5V0 accessory circuits on the Carrier Board.

 RTC

RTC

The Real Time Clock (RTC) on the phyCORE-AM64x serves the basic purpose of keeping time of day, as well as providing tamper proofing for digital rights management and waking up the rest of the chip from a power down state. The RTC can keep track of the year, month, date, weekday, hour, minute, and seconds and has timer, alarm, and external event input functionality. This guide will show you how to use rtc0 on the phyCORE-AM64x development kit to verify functionality when power is lost. To learn more information about the phyCORE-AM64x RTC interface, please see section 11.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

RTC Naming

Note

rtc0 is named after the physical IC populated on the SOM at U6.

	Verify the name of the RTC device by checking the name file in the interface’s sysfs directory:

Target (Linux)

cat /sys/class/rtc/rtc0/name

Expected Output

root@phyboard-electra-am64xx-2:~# cat /sys/class/rtc/rtc0/name
rtc-rv3028 0-0052

Setting the System Time

	Set the RTC time by first setting the system time. We can do this manually or leverage the Network Time Protocol (NTP):

Manually

	Use the following command to set an arbitrary time as the system time in Linux:

Target (Linux)

 date 071916142016

Note

The argument in the above command broken down is:

07-19 16:14 2016

date time year

Setting the RTC

	With the system time set according to the above steps, you can now write this time to the RTC using the following command:

Target (Linux)

hwclock -w -f /dev/rtc0

Reading the RTC

	The RTC’s time can be read using the following command:

Target (Linux)

hwclock -r -f /dev/rtc0

	The time set here should persist between boots and times without power as long as the VBAT pin of the SOM is supplied.

Warning

A new SOM with an unprogrammed RTC may throw errors when read:

Example Output

root@phyboard-electra-am64xx-2:~# hwclock -r -f /dev/rtc0
hwclock: ioctl(RTC_RD_TIME) to /dev/rtc0 to read the time failed: Invalid argument

Set the RTC time according to the steps above to resolve this.

Expected Output

root@phyboard-electra-am64xx-2:~# hwclock -r -f /dev/rtc0
Mon Oct 2 21:36:33 2023 0.000000 seconds

 SD Card

SD Card

The SD card interface can be used as a boot device or plug-and-play external media. This guide will walk through reading and writing to the phyCORE-AM64x development kit’s mirco-SD card. For information on how to boot the development kit from SD card see the guide SD Card. More information on the SD card interface all together can be found in the section 6.2.2 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x microSD Card connector]

Requirements

	SDHC SD card, at least 8GB for PHYTEC’s TISDK release image (Included in development kit)

	Linux Host PC or Virtual Machine (Ubuntu recommended) (Only for Transfering Media from Host)

	SD card reader (operational under Linux) (Only for Transfering Media from Host)

Transfering Media on Target

This portion of the guide will show how to read and write files with the SD card interface from the development kit.

Mounting the SD card

When an external SD card is inserted, it will be mounted automatically and can be seen as /dev/mmcblk1 in Linux when booting from SD card.

	Verify that the SD card has been mounted.

Target (Linux)

mount | grep mmc

Expected Output

root@phyboard-electra-am64xx-2:~# mount | grep mmc
/dev/mmcblk1p2 on / type ext4 (rw,relatime)
/dev/mmcblk1p1 on /boot type vfat (rw,relatime,fmask=0022,dmask=0022,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)

	See the contents of the SD card.

Target (Linux)

ls /boot

Write to the SD Card

	Create a text file and copy (cp) the file to the SD card.

Target (Linux)

echo "SD card Test" > sdcard.txt
cp sdcard.txt /boot/sdcard.txt

	Verify that the file wasn’t corrupted with md5sum. Both the hashes should match.

Target (Linux)

md5sum sdcard.txt /boot/sdcard.txt

Expected Output

root@phyboard-electra-am64xx-2:~# md5sum sdcard.txt /boot/sdcard.txt
cf7b014f4f2517400c1fc33b851e7da4 sdcard.txt
cf7b014f4f2517400c1fc33b851e7da4 /boot/sdcard.txt

Read from the SD Card

	Copy the file from the SD card to the root directory

Target (Linux)

cp /boot/sdcard.txt ~/read-sd.txt

	Verify that the file wasn’t corrupted with md5sum. Both the hashes should match.

Target (Linux)

md5sum /boot/sdcard.txt read-sd.txt

Expected Output

root@phyboard-electra-am64xx-2:~# md5sum /boot/sdcard.txt read-sd.txt
cf7b014f4f2517400c1fc33b851e7da4 /boot/sdcard.txt
cf7b014f4f2517400c1fc33b851e7da4 read-sd.txt

Note

	Using Your Linux Machine
	You can see the sdcard.txt file on your Linux Ubuntu machine via a SD card reader (operational under Linux).

	Power off and remove the power supply from the development kit.

Target (Linux)

 poweroff

	Insert the SD card into the reader which is connected to your Linux Host machine.

	Two USB partitions should appear. Double click both.

	One of these should be the root filesystem which will be labeled ‘/root’

	In the ‘/root’ parition you should see the file sdcard.txt

Transfering Media from Host

The SD card can be used to transfer files to and from the development kit too, the only down side for this is that you will want to power off the development kit before removing the primary boot media. This guide assumes that the SD card contains all the necessary files and images needed to boot the development kit, refered to as “a bootable SD card”. To find out more on how to create a bootable SD card please see the guide SD Card.

	Power off the development kit.

Target (Linux)

poweroff

	Remove the SD card and connect it to your Linux machine via an SD card reader.

Note

You will not be able to place files on the SD Card using Windows because the SD Card is formatted for Linux. Windows does not recognize the format.

The SD Card is formatted with a minimal root filesystem size by default and in order to transfer larger files it may become necessary to increase its size to take advantage of the full size of the SD Card.

	Increase the root filesystem partition of the SD card.

	Run the following command without the SD card connected to the host machine.

Host (Ubuntu)

ls /dev/sd*

	Connect the bootable SD card to your Ubuntu host machine.

	Run the following command with the SD card connected to the host machine.

Host (Ubuntu)

ls /dev/sd*

The SD card device name is of the form /dev/sd[a-z] in Ubuntu and the letter identifier along with any partitions (signified by the numbers following the letter) on the SD card are enumerated upon connection to the host machine. Look at the second output of the command and look for new devices that appeared there, the new device will correspond to the SD card. Remember the /dev/sdX identifier corresponding to your SD card as you will need to use this in the following step.

Be confident you have the correct */dev/sdX* device identified for your SD card before proceeding. Specifying the incorrect disk using the ‘fdisk’ utility in the steps below can potentially destroy your Virtual Machine and will require you to set it back up again from scratch.

	It is best to first backup the SD card to a file just in case something goes terribly wrong and you end up losing its contents:

Host (Ubuntu)

umount /dev/sdX* #unmount the entire SD Card, not just any single partition
sudo dd if=/dev/sdX of=~/backup.sdcard bs=1M conv=fsync && sync

	Use the fdisk utility and provided command sequence to create a new, larger root filesystem partition in the SD card’s partition table:

Host (Ubuntu)

sudo fdisk /dev/sdX

fdisk is an interactive utility, use the following command sequence
p (print the partition table and note the starting sector of the 2nd partition, call this START2. START2=196608 using the pre-built software)
d (delete a partition)
2 (select the root filesystem)
n (create a new partition)
p (make it a primary partition)
2 (make it the second partition)
START2 (specify the same starting sector for the 2nd partition as before)
ENTER (just hit ENTER to use the default size, which will automatically use up the remaining space on the SD Card)
w (write the changes)

	Disconnect and reconnect the SD card from the host machine at this point to ensure the new partition table is being picked up by the kernel.

	Finally, grow the root filesystem to take up the entire space in the partition:

Host (Ubuntu)

sudo resize2fs /dev/sdX2

	Drag and drop the file to the rootfs partition of the SD card using the GUI.

	In order to copy files to the SD card using the terminal, this can be done with the standard ‘cp’ (copy) command. See the above section “Transfering Media from Target” for more information.

	The next time you boot your phyCORE-AM64x into Linux, using the same SD Card, your file should be present in the filesystem.

 SPI

SPI

The Serial Peripheral Interface (SPI) is a transmit/receive, master/slave synchronous serial bus. The phyCORE-AM64x SOM provides access to seven SPI ports at the phyCORE-Connector. This guide will show you how to test the SPI interface on the phyCORE-AM64x development kit via a loopback test. To learn more information about the phyCORE-AM64x SPI, please see section 7.6 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x SPI1]

Requirements

	M/M Jumper Wire [https://www.amazon.com/Solderless-Flexible-Breadboard-Jumper-100pcs/dp/B005TZJ0AM/ref=sr_1_10?crid=3HLIKV8GNFX3H&keywords=jumper%2Bwire&qid=1699400605&sprefix=jumper%2Bwire%2Caps%2C132&sr=8-10&th=1]

Note

The expansion header was designed for 2mm pins. It is acceptable to use 2.54mm jumper pins during the development and verification of interfaces. The only issue arises when you switch back to plugging in a 2mm male header for an expansion board you created.

	SDHC SD card, at least 8GB for PHYTEC’s TISDK release image (Included in development kit)

	Linux Host PC or Virtual Machine (Ubuntu recommended)

	SD card reader (operational under Linux)

Development Kit Setup

Note

There are 2x SPI interfaces on the phyCORE-AM64x SOM but only one is set up for use on the development kit carrier board (SPI1).

In the software, the SPI1 interface can be accessed through /dev/spidev1.0

	Power off and remove the power supply from the development kit.

Target (Linux)

 poweroff

	Connect pin 28 and pin 30 on the X27 expansion connector using a M-M jumper wire. These pins correspond to SPI1’s MISO and MOSI signals.

Enabling Overlay & Script

	Power on the board and press any key to stop autoboot and enter U-Boot.

	Type the following commands to enable the device tree overlay:

Target (U-Boot)

setenv overlays k3-am64-phyboard-electra-x27-uart3-spi1.dtbo
boot

Loop-back Test

	Initiate a loop-back test on the SPI1 interface (/dev/spidev1.0).

Target (Linux)

spidev_test -v -D /dev/spidev1.0

Expected Output

spi mode: 0x0
 bits per word: 8
 max speed: 500000 Hz (500 KHz)
 TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|
 RX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|

Note

If SPI communication is not functioning properly, only “00”s or “FF”s will be printed in the “RX” line.

This can be demonstrated by running the previous command again with the jumper removed.

 Thermal Zone

Thermal Zone

Thermal management is necessary to ensure proper operation of the phyCORE-AM64x SOM, especially when integrated inside an enclosure. The AM64x processor generates considerable heat, so it is important to manage the system’s temperature. The phyCORE-AM64x has a temperature rating of -40°C to 85°C. This guide will show you how to read the junction temperature of the processor on the phyCORE-AM64x SOM. To learn more information about the phyCORE-AM64x thermal management, please see section 4.10 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

Reading the Temperature

The phyCORE-AM64x processor has 2 physical location (thermal zone) where the temperature can be monitored. The available zones can be accessed in the Linux directory /sys/class/thermal/thermal_zone0 or /sys/class/thermal/thermal_zone1.

	To output the temperature of thermal zone 0 run the following command:

Target (Linux)

cat /sys/class/thermal/thermal_zone0/temp

Expected Output

62905

Temperature Trip Point

The thermal zone includes trip points. You can set the trip points to a temperature that will trigger an event, such as turning on fan for active cooling. You can also build in a critical trip point; if this temperature is reached, Linux will automatically shutdown the system for protection of the processor.

	To view the type of trip points and the trip point temperatures of thermal zone 0 use the following command:

Target (Linux)

cat /sys/class/thermal/thermal_zone0/trip_point*

Expected Output

2000
105000
critical

The critical trip point which will cause the system to shutdown will be reached when the temperature reaches 105C and will turn off when the temperature reaches 103C.

Note

Learn more about the thermal management driver from Texas Instruments Kernel Driver Guides [https://software-dl.ti.com/processor-sdk-linux/esd/AM64X/08_06_00_42/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/VTM.html].

 TPM

TPM

The phyCORE-AM64x development kit provides a Trusted Platform Module (TPM) that provides hardware-based security functions. TPM technology is designed to provide hardware-based security functions. This guide will show you how to use the TPM to perform a hash on some data.

Confirming TPM Function

	To perform the hash operation and get the resulting output run the following command:

Target (Linux)

 echo -n "test" | tpm2_hash -g sha256 | hexdump -C

Expected Output

 00000000 9f 86 d0 81 88 4c 7d 65 9a 2f ea a0 c5 5a d0 15 |.....L}e./...Z..|
 00000010 a3 bf 4f 1b 2b 0b 82 2c d1 5d 6c 15 b0 f0 0a 08 |..O.+..,.]l.....|
 00000020

 UART

UART

he phyCORE-AM64x SOM provides access to up to eleven UART interfaces that can be used for configuration and data exchange with external peripheral devices. The phyCORE-AM64x development kit provides nine UART modules that can be used for configuration and data exchange with external peripheral devices.

By default, the phyCORE-AM64x development kit is configured to use UART0 (ttyS2 in the device tree) for a Linux console input and output. The UART0 singal is availble through a micro-USB connector (X20) via a FTDI chip (U95). PHYTEC recommends allocating UART0 for console access on custom designs. UART1 is also available at a 2x5 connector X4 (ttyS3) and UART3 is available at a 60 pin expansion header X27. This guide will walk through the steps needed to verify the functionality of UART1 and UART3. To learn more information about the phyCORE-AM64x UART interface, please see sections 7.7 and 10.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

[image: phyCORE-AM64x UART]
[image: phyCORE-AM64x UART]
The UART channels correspond to the following connectors and system paths.

Boot Settings

	UART

	Connector

	sysfs Path

	MCU_UART0

	X20 (Micro USB)

	ttyS0

	MCU_UART1

	X28 (Expansion Header)

	ttyS1

	UART0

	X20 (Micro USB)

	ttyS2

	UART1

	X4 (10-pin Header)

	ttyS3

	UART3

	X27 (Expansion Header)

	ttyS5

	UART5

	X31 (mPCIe)

	ttyS7

Requirements

	USB to RS-232 Serial Adapter [https://www.amazon.com/Adapter-Chipset%EF%BC%8CDB9-Serial-Converter-Windows/dp/B0759HSLP1/ref=sr_1_1_sspa?hvadid=557588407367&hvdev=c&hvlocphy=9033314&hvnetw=g&hvqmt=e&hvrand=6761798776606774634&hvtargid=kwd-4990307659&hydadcr=18038_13447332&keywords=usb%2Bto%2Bserial%2Brs232%2Badapter&qid=1681511534&sr=8-1-spons&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEyNjEwUEMzNkZNQ1IzJmVuY3J5cHRlZElkPUEwNzk2ODY1MU1CV0hNRURHUEc1SiZlbmNyeXB0ZWRBZElkPUEwMzAzMzIzSldNTUNEWU1YRUU2JndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ&th=1] working with UART0

	DB9 Male 2x5 to RS232 Female Cable (Included in development kit) working with UART0

	USB to TTL Cable 3 pin [https://www.digikey.com/en/products/detail/ftdi,-future-technology-devices-international-ltd/TTL-232R-RPI/4382044?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_High%20ROAS%20Categories&utm_term=&utm_content=&gclid=CjwKCAjwu4WoBhBkEiwAojNdXn0iOQl1LMm-PcDucYCPbxbODvxLKVqUbIiMPjIsuvW5Oy5bxZMyUBoCfKIQAvD_BwE] working with UART3

	3x M/M Jumper Wire [https://www.amazon.com/Solderless-Flexible-Breadboard-Jumper-100pcs/dp/B005TZJ0AM/ref=sr_1_10?crid=3HLIKV8GNFX3H&keywords=jumper%2Bwire&qid=1699400605&sprefix=jumper%2Bwire%2Caps%2C132&sr=8-10&th=1] working with UART3

Note

The expansion header was designed for 2mm pins. It is acceptable to use 2.54mm jumper pins during the development and verification of interfaces. The only issue arises when you switch back to plugging in a 2mm male header for an expansion board you created.

UART1 Hardware Setup

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Connect the DB9 Male 2x5 to RS232 Female Cable to the X4 connector (red line indicates Pin 1)

[image: phyCORE-AM64x UART1 Pin 1]

	Connect the USB to RS-232 serial adpater to the female end of the the DB9 cable. Do not connect the cable to your Host system yet.

	Power the development kit back on.

	Open your Host system’s Device Manager and expand Ports (COM & LPT).

Note that there should be two COM ports named “Silcon Labs Dual CP2105 USB to UART Bridge,” these relate to X20.

Note

Windows systems can press the Windows key, type “device manager” and press ENTER.

	Connect the USB to RS-232 serial adapter to your Host machine.

	Take note of any new device names that appear under “Ports”. You’ll need the COM port device number in the next steps.

[image: UART COM Port]

UART1 Terminal Setup

	Open a new terminal window. This guide will be using TeraTerm but other emulators like PuTTY will work as well.

[image: Open a New Terminal Session]

	Set the serial parameters: 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control.

[image: Setup Serial Port]
[image: Terminal Settings]

	Select a COM port that coresponds to the one USB to RS-232 serial adapter port.

UART1 Setting the Baud Rate

	In the terminal window connected to X20, the development kit default serial port, enter the following to set the communication rate for UART1:

Target (Linux)

stty -F /dev/ttyS3 115200

Sending a Message to UART1

	Now try sending a message to UART1 terminal (X4). In the X20 terminal, enter the following command:

Target (Linux)

echo You did it! > /dev/ttyS3

	Take a look at the UART1 terminal.

Expected Output (UART1 console)

 You did it!

Note

If you have trouble receiving or sending messages to a Console Terminal, ensure that you have the correct COM port set and the terminal is configured for 8 bit data, no parity bits, 1 stop bit, and a baud rate of 115200.

Receiving a Message from UART1

	To receive messages from your host machine, set your Linux console to output any incoming data from the UART1 connection:

Target (Linux)

cat /dev/ttyS3

	Now send a message from the UART1 console to the Linux console. Type anything you want and then hit the “Enter” button.

	Enter Ctrl + C in the Linux console to stop waiting for incoming data.

UART3 Hardware Setup

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Connect the TTL Cable to the expansion header X27. Do not connect the cable to your host system yet.

TTL Cable and X27 Header Signals

	GND

	Black Connecter

	Pin 4 (X27)

	TXD

	Orange Connecter

	Pin 5 (X27)

	RXD

	Yellow Connecter

	Pin 8 (X27)

[image: ../_images/pb-07225_uart-x27-pinout.png]

	Power the development kit back on and stop in U-Boot.

	Load the device tree overlay required for UART3 and then boot the board.

Target (U-Boot)

setenv overlays k3-am64-phyboard-electra-x27-uart3-spi1.dtbo
boot

Note

For more information about overlays see Configuring the Bootloader.

	Open your host system’s Device Manager and expand Ports (COM & LPT).

Note

Windows systems can press the Windows key, type “device manager” and press ENTER.

	Connect the USB end of the TTL cable to the Host machine.

	Take note of any new device names that appear under “Ports”. You’ll need the COM port device number in the next steps.

[image: UART COM Port]

UART3 Terminal Setup

	Open a new terminal window. This guide will be using TeraTerm but other emulators like PuTTY will work as well.

[image: Open a New Terminal Session]

	Set the serial parameters: 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control.

[image: Setup Serial Port]
[image: Terminal Settings]

	Select a COM port that corresponds to the TTL cable.

UART3 Setting the Baud Rate

	In the terminal window connected to X20, the development kit default serial port, enter the following to set the communication rate for UART3:

Target (Linux)

 stty -F /dev/ttyS5 115200

Sending a Message to UART3

	Now try sending a message to UART3 terminal. In the debug console terminal, enter the following command:

Target (Linux)

echo You did it! > /dev/ttyS5

	Take a look at the UART3 terminal.

Expected Output (UART3 Console)

You did it!

Note

If you have trouble receiving or sending messages to a console terminal, ensure that you have the correct COM port set and the terminal is configured for 8 bit data, no parity bits, 1 stop bit, and a baud rate of 115200.

You can ensure the COM port settings in the debug console with the following command:

Target (Linux)

stty -F /dev/ttyS5

Expected Output

root@phyboard-electra-am64xx-2:~# stty -F /dev/ttyS5
speed 115200 baud; line = 0;
-brkint ixoff -imaxbel iutf8
-iexten
root@phyboard-electra-am64xx-2:~#

To set the settings to match that of the debug console use the following command:

Target (Linux)

 stty -F /dev/ttyS5 115200
 stty -brkint ixoff -imaxbel iutf8 -iexten < /dev/ttyS5

Receiving a Message from UART3

	To read messages from UART3, set your debug console to output any incoming data from the UART3 connection:

Target (Linux)

 cat /dev/ttyS5

	Now send a message from the UART3 console to the debug console. Type anything you want and then hit the “Enter” button.

Expected Output

root@phyboard-electra-am64xx-2:~# cat /dev/ttyS5
Hello World

	Enter Ctrl + C in the Linux console to stop waiting for incoming data.

 USB

USB

The Universal Serial Bus (USB) can be utilized for many functions on the development kit, including external media. The phyCORE-AM64x System-on-Module (SOM) provides one USB 3.1 Gen 1 Dual-Role Device (DRD) Subsystem (USB0) which can be utilized as a USB 2.0 port with OTG functionality or as a USB 3.1 port with USB 3.1 Gen 1 and xHCI 1.1 specification. The full pinout of the USB 3.1 controller includes the signaling for both USB 3.1 and USB 2.0. This means that USB0 can be used as either a USB 3.1 port or a USB 2.0 port.

This guide will show you how to use the USB Host capabilities featured on the phyCORE-AM64x development kit. To learn more information about the phyCORE-AM64x USB interface, please see section 7.8 in the Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

The USB0 interface uses a USB HUB to split the bus to 4x locations.

USB0 Split by USB Hub

	Type

	Qty

	Header Location

	Speed

	Bus

	USB A Double Stacked

	2

	X13

	3.1

	002

	Mini PCIe

	1

	X31

	2.0

	001

	Pin Header

	1

	X27 (Pin 21, 22, 37, 39)

	2.0

	001

[image: phyCORE-AM64x USB Connections on the Front]
[image: phyCORE-AM64x miniPCIe Connector Location]

Warning

The USB super speed signals are muxed between the miniPCIe interface and the USB HUB. Enabling miniPCIe will disable USB3.0 speeds at the stacked type-A USB connector but USB2.0 speeds will still be available.

Requirements

	USB Storage Device [https://www.amazon.com/SanDisk-Ultra-Drive-Type-C-Flash/dp/B07YYJ63VF/ref=asc_df_B07YYJ63VF/?tag=&linkCode=df0&hvadid=416944208773&hvpos=&hvnetw=g&hvrand=10122061217681121613&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9033314&hvtargid=pla-858626018619&ref=&adgrpid=99659216531&th=1]

Development Kit Setup

	First, ‘poweroff’ the development kit.

Target (Linux)

poweroff

	Power on the development kit and stop in U-Boot when prompted.

	Enable the device tree overlay.

Target (U-Boot)

setenv overlays k3-am64-phyboard-electra-rdk-pcie-usb2.dtbo
boot

Note

For more information about overlays see chapter Configuring the Bootloader.

Verifying USB Interface

	With the phyCORE-AM64x development kit booted into Linux, see that there are 4 USB devices. There should be 2 devices on each bus.

Target (Linux)

lsusb

Expected Output

Bus 002 Device 001: ID 1d6b:0003 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller
Bus 001 Device 002: ID 0451:8242
Bus 001 Device 001: ID 1d6b:0002 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller

	Insert a USB3.0 storage device into the top connector on X13. You should see something like the following on the serial console:

Expected Output

root@phyboard-electra-am64xx-2:~# [30.428000] usb 1-1.1: new high-speed USB device number 4 using xhci-hcd
[30.532866] usb 1-1.1: New USB device found, idVendor=0781, idProduct=5591, bcdDevice= 1.00
[30.541258] usb 1-1.1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[30.548583] usb 1-1.1: Product: SanDisk 3.2Gen1
[30.553247] usb 1-1.1: Manufacturer: USB
[30.557275] usb 1-1.1: SerialNumber: 0401a83fbd697e437712b826697973aaaf57d1c75e9691ad879dfe7934b8a81bea020000000000000000000037ac13c5ff935d18915581076e2cc649
[30.573038] usb-storage 1-1.1:1.0: USB Mass Storage device detected
[30.580206] scsi host0: usb-storage 1-1.1:1.0
[31.609115] scsi 0:0:0:0: Direct-Access USB SanDisk 3.2Gen1 1.00 PQ: 0 ANSI: 6
[31.622632] sd 0:0:0:0: [sda] 30031872 512-byte logical blocks: (15.4 GB/14.3 GiB)
[31.636317] sd 0:0:0:0: [sda] Write Protect is off
[31.641991] sd 0:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[31.664047] sd 0:0:0:0: [sda] Attached SCSI removable disk

	Re-run the ‘lsusb’ command and verify that the USB drive connected to bus 002.

Target (Linux)

 lsusb

Expected Output

root@phyboard-electra-am64xx-2:~# lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller
Bus 001 Device 004: ID 0781:5591 USB SanDisk 3.2Gen1
Bus 001 Device 002: ID 0451:8242
Bus 001 Device 001: ID 1d6b:0002 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller

	To list more information about the USB device and buses on the development kit use the following command.

This command will output a good chunk of information. This guide will only show a snippet of the expected output for the USB drive that was just connected.

Target (Linux)

lsusb -v -s 001:004

Note

“001” refers to bus 001 and “004” refers to the device number, both of these can be found in the lsusb command.

Expected Output for Example USB Drive

Bus 001 Device 004: ID 0781:5591 USB SanDisk 3.2Gen1
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.10
 bDeviceClass 0
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x0781
 idProduct 0x5591
 bcdDevice 1.00
 iManufacturer 1 USB
 iProduct 2 SanDisk 3.2Gen1
 iSerial 3 0401a83fbd697e437712b826697973aaaf57d1c75e9691ad879dfe7934b8a81bea020000000000000000000037ac13c5ff935d18915581076e2cc649
 bNumConfigurations 1
 Configuration Descriptor:
 bLength 9
 bDescriptorType 2
 wTotalLength 0x0020
 bNumInterfaces 1
 bConfigurationValue 1
 iConfiguration 0
 bmAttributes 0x80
 (Bus Powered)
 ..continues..

	The speed of the USB device can be determined with either the lsusb -v from above or by reading the device’s “speed”

Target (Linux)

cat /sys/bus/usb/devices/usb2/speed

Expected Output

root@phyboard-electra-am64xx-2:~# cat /sys/bus/usb/devices/usb2/speed
5000

Note

USB3.0 has transmission speeds up to 5000 Mbit/s, also known as “super speed”. USB2.0 has transmission speeds up to 480Mbit/s, also known as “full speed”.

Mounting USB Stroage Devices

	Verify that a device directory was established for the USB drive.

	Run the following command to confirm the USB device name.

Target (Linux)

ls /dev/sd*

Expected Output

root@phyboard-electra-am64xx-2:~# ls /dev/sd*
/dev/sda

	Remove the USB drive.

	Re-run the ‘ls /dev/sd’ command to confirm the device name.

Expected Output

 root@phyboard-electra-am64xx-2:~# ls /dev/sd*
 /dev/sda

	Re-insert the USB drive to the top connector of X13.

Note

In this example the device name for the USB drive is “sda”.

	Make a directory for mounting the USB device.

Target (Linux)

 mkdir ~/usb_sda

	Format file type.

Target (Linux)

 mkfs.vfat /dev/sda

	Mount the USB device to the directory.

Target (Linux)

mount /dev/sda ~/usb_sda/

	See what media is on the USB drive.

Target (Linux)

 ls ~/usb_sda/

Write to the USB Host Device

	Generate a random 10 MB file to test transferring data from the storage device.

Target (Linux)

dd if=/dev/urandom of=test.file count=10 bs=1M

Expected Output

root@phyboard-electra-am64xx-2:~# dd if=/dev/urandom of=test.file count=10 bs=1M
10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.216022 s, 48.5 MB/s

	Copy the file to your storage device.

Target (Linux)

cp test.file ~/usb_sda/ && sync

Read from the USB Host Device

	Copy the test file we previously created during the write process back to the host:

Target (Linux)

cp ~/usb_sda/test.file readback-usb.file && sync

	We can double check that the file was successfully copied to and from the USB device by checking the md5sum of the file:

Target (Linux)

md5sum test.file readback-usb.file

Expected Output

root@phyboard-electra-am64xx-2:~# md5sum test.file readback-usb.file
d3aa3ee1db746d6f7fb66c9b42f4ea6b test.file
d3aa3ee1db746d6f7fb66c9b42f4ea6b readback-usb.file

Unmounting the Drive

Warning

Make sure the drive is unmounted prior to physically disconnecting the device.
Failure to do so may result in loss of data and corruption of files

Target (Linux)

umount ~/usb_sda/
umount /dev/sda

 Booting Essentials

Booting Essentials

This section of the product wiki contains guides to update and boot from different boot sources on the phyCORE-AM64x SOM.

	SD Card

	eMMC

	OSPI

	UART

	Copying Files to the Device

	Configuring the Bootloader

Boot Modes

The phyCORE-AM64x development kit supports booting from many different interfaces. By default, the developement kit is set to boot from the micro-SD card. To change the boot device, DIP switches S3 and S4 can be used. Boot switches should be changed with power off.

Boot Settings (S10)

	ON

	OFF

	Enables the DIP switches (S3, S4) to override default boot sequence

	Disables the DIP switches (S3, S4). Allowing the SOM to boot with default boot sequence

Boot Settings

	SD

	eMMC

	OSPI

	UART

	JTAG (No Boot)

	[image: ../_images/pb-07225_boot-sd.png]

	[image: ../_images/pb-07225_boot-emmc.png]

	[image: ../_images/pb-07225_boot-ospi.png]

	[image: ../_images/pb-07225_boot-uart.png]

	[image: ../_images/pb-07225_boot-jtag.png]

Tip

Note the orientation of the physical switches and the switch diagrams here, the setting can easily be flipped depending on the orientation of the development kit. Look for the “ON” marking to clarify switch positions.

[image: phyCORE-AM64x Boot Mode Switches]
[image: phyCORE-AM64x Boot Mode Switches Close-up]

 SD Card

SD Card

Create a Bootable SD Card

To create a bootable SD card, you’ll need to flash a BSP image onto it. “Flashing” refers to the process of burning software images onto a flash memory storage device. This guide section outlines three methods for flashing the complete .wic.xz image format to an SD Card. One method involves using balena-etcher, while the other two methods utilize Linux terminal commands: dd and bmaptool.

The .wic.xz image format is a compressed binary containing all the necessary binaries, as well as information about the required disk partitions needed for booting the phyCORE-AM64x into Linux. This includes the bootloader, kernel, and root filesystem.

In order to boot the phyCORE-AM64x development kit into Linux, it must load valid software from a memory storage device. It is typical for production systems to boot software from an onboard (non-removable) memory storage device such as eMMC memory but booting from an SD Card is more convenient during development. The phyCORE-AM64x development kit is configured to boot from an SD Card by default.

A pre-configured SD Card should have been included in the box with your development kit but this guide will walk through the creation of a bootable SD Card using Pre-Built Binaries or images you have generated on your own by following the Build the BSP guide.

Warning

The machine number for the BSP image can be impacted based on the processor you are developing with. Please refer to the table in the Release notes [https://docs.phytec.com/projects/yocto-phycore-am64x/en/bsp-yocto-ampliphy-am64x-pd23.2.1/releasenotes/pd23.2.1.html#part-number-summary] to assist in selecting the correct machine.

Using balenaEtcher

What you’ll need

	SD Card Reader

	4GB micro-SD Card or larger (Included in development kit)

Step-by-Step

	Download the SD card flasher app BalenaEtcher [https://etcher.balena.io/]

	Download the prebuilt SD card image Pre-Built Binaries.

	Now that your system is setup, use the BalenaEtcher SD card flasher to create a bootable SD card.

	Open BalenaEthcher and select “Flash from file”.

	Select the phytec-headless-image-phyboard-electra-am64xx-2.wic.xz SD card image file from your Downloads folder.

	Then insert the micro-SD card into the SD card reader.

	Click on “Select Target” and select the SD card.

	Begin flashing the SD card by pressing “Flash!”

	Once BalenaEtcher is done flashing the SD card image, eject the SD card from the Host PC and insert the SD card into the development kit.

See the section “Booting from SD Card” for more information.

Using bmaptool (Linux)

What you’ll need

	Ubuntu 22.04 LTS, 64-bit Host Machine

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	SD Card Reader

	4GB micro-SD Card or larger (Included in development kit)

Step-by-Step

	Download the prebuilt SD card image (wic.xz) and bmap (.wic.bmap) from the Pre-Built Binaries.

	Install bmaptool

host:~$ sudo apt install bmap-tools

	Run the following command without the SD card connected to the host machine.

host:~$ ls /dev/sd*

	Connect the SD card to the Ubuntu host machine.

	Run the following command again with the SD card connected to the host machine.

host:~$ ls /dev/sd*

	Unmount the SD card from the host machine. Do not remove the card from the machine.

host:~$ umount /dev/sdX*

	Navigate to the directory containing the ‘.wic.xz’ file you wish to flash. This might be wherever you downloaded the pre-built image or it could be the deployment directory of your local BSP build at $BUILDDIR/deploy/images/phyboard-electra-am64xx-2/

host:~$ cd <image location>

	Flash the .wic.xz image to the SD Card using bmaptool:

host:~$ sudo bmaptool copy phytec-headless-image-phyboard-electra-am64xx-2.wic.xz /dev/sdX

Note

Note that you have to flash the SD Card image to the entirety of the SD Card. This is done by specify the output location of the flashing command without a numbered partition specified. For example, if you try to flash the SD Card image to /dev/sda1 this will result in a improperly formatted SD Card.

	Unmount the SD card from your Linux machine.

host:~$ umount /media/<user>/boot /media/<user>/root

	Insert the micro-SD card into the development kit. For more information on how to boot from SD card, see the section “Booting from SD Card”.

Using dd (Linux)

What you’ll need

	Ubuntu 22.04 LTS, 64-bit Host Machine

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	SD Card Reader

	4GB micro-SD Card or larger (Included in development kit)

Step-by-Step

	Download the prebuilt SD card image (wic.xz) from the Pre-Built Binaries.

	Run the following command without the SD card connected to the host machine.

host:~$ ls /dev/sd*

	Connect the SD card to the Ubuntu host machine.

	Run the following command again with the SD card connected to the host machine.

host:~$ ls /dev/sd*

	Unmount the SD card from the host machine. Do not remove the card from the machine.

host:~$ umount /dev/sdX*

	Navigate to the directory containing the ‘.wic.xz’ file you wish to flash. This might be wherever you downloaded the pre-built image or it could be the deployment directory of your local BSP build at $BUILDDIR/deploy/images/phyboard-electra-am64xx-2/

host:~$ cd <image location>

	Flash the .wic.xz image to the SD Card:

host:~$ sudo xz -dc phytec-headless-image-phyboard-electra-am64xx-2.wic.xz | sudo dd of=/dev/sdX bs=8192 conv=fsync

Note

Note that you have to flash the SD Card image to the entirety of the SD Card. This is done by specify the output location of the flashing command without a numbered partition specified. For example, if you try to flash the SD Card image to /dev/sda1 this will result in a improperly formatted SD Card.

	Unmount the SD card from your Linux machine.

host:~$ umount /media/<user>/boot /media/<user>/root

	Insert the micro-SD card into the development kit. For more information on how to boot from SD card, see the section “Booting from SD Card”.

Updating Individual Parts of the SD Card (Advanced, Linux Machine)

Once the SD card has been formatted the first time via flashing the complete .wic.xz image, you do not need to flash the entire contents of the SD Card image again to update the image components. The bootloader, kernel and root filesystem can be updated individually (depending on the changes being tested) to potentially save a lot of time during development. Find all the images and binaries for the phyCORE-AM64x development kit on the Pre-Built Binaries page.

Updating the Kernel

	First, remove the existing kernel image and device tree files:

host:~$ sudo rm /media/<user>/boot/Image
host:~$ sudo rm /media/<user>/boot/oftree
host:~$ sudo rm /media/<user>/boot/k3-am642-phyboard-electra-rdk.dtb

	Copy the new Linux kernel, device tree binaries and applicable device tree overlays to the SD card’s Boot partition:

host:~$ sudo cp Image /media/<user>/boot/
host:~$ sudo cp oftree /media/<user>/boot/
host:~$ sudo cp k3-am642-phyboard-electra-rdk.dtb /media/<user>/boot/
host:~$ sudo sync /media/<user>/boot/

Updating the Root Filesystem

	Connect your SD card to the Host Machine and identify the root filesystem’s mount point. This can be down using the mount utility from above:

host:~$ mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
udev on /dev type devtmpfs (rw,nosuid,relatime,size=1975752k,nr_inodes=493938,mode=755)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=400172k,mode=755)
/dev/sda1 on / type ext4 (rw,relatime,errors=remount-ro)
...
/dev/sde1 on /media/<user>/boot type vfat (rw,nosuid,nodev,relatime,uid=1000,gid=1000,fmask=0022,dmask=0022,codepage=437,iocharset=iso8859-1,shortname=mixed,showexec,utf8,flush,errors=remount-ro,uhelper=udisks2)
/dev/sde2 on /media/<user>/root type ext4 (rw,nosuid,nodev,relatime,uhelper=udisks2)

We can see in this example output the SD card’s two partitions are mounted on /media/<user>/boot and /media/<user>/root respectively.

	Delete the contents of the SD card’s root filesystem partition:

host:~$ sudo rm -rf /media/<user>/root/*

	Unpack the root filesystem tarball into the SD card’s existing root filesystem partition’s mount point:

host:~$ sudo tar -xf phytec-headless-image-phyboard-electra-am64xx-2.tar.xz -C /media/<user>/root/
host:~$ sudo sync /media/<user>/root/

Updating the Bootloader

	Delete the contents of the SD card’s boot partition:

host:~$ sudo rm /media/<user>/boot/tiboot3.bin
host:~$ sudo rm /media/<user>/boot/tispl.bin
host:~$ sudo rm /media/<user>/boot/u-boot.img

	Copy the bootloader binaries to the SD card:

host:~$ sudo cp tiboot3.bin /media/<user>/boot/
host:~$ sudo cp tispl.bin /media/<user>/boot/
host:~$ sudo cp u-boot.img /media/<user>/boot/
host:~$ sudo sync /media/<user>/boot/

Booting from SD Card

The phyCORE-AM64x development kit is configured to boot from an SD Card slot by default and basic steps for performing this and establishing serial communication are outlined in the Quickstart.
Boot switch (aka DIP switches) settings determine the location and method the boot ROM loads the first stage bootloader into memory before executing it.

Note

If you have saved the U-Boot environment using saveenv, those changes may persist even if you have reflashed the SD card. Bmaptool will persist the environment, while other programs like balena-etcher might reset the environment. You can manually reset the environment using:

uboot:~# env default -f -a
uboot:~# saveenv

Boot Switch Settings

	S10 should be ON to override default boot settings.

[image: SD Boot Switch]
[image: phyBOARD-AM64x boot switches]

 eMMC

eMMC

Flashing the eMMC is detailed in its dedicated chapter, referenced as Flashing the eMMC.

Booting from eMMC

The phyCORE-AM64x development kit is configured to boot from an SD card slot by default. Therefore you’ll have to change the DIP switches to reflect the eMMC boot mode configuration seen below.

Boot Switch Settings

	S10 should be ON

[image: eMMC Boot Switch]
[image: phyBOARD-AM64 close-up boot switches]

 OSPI

OSPI

An Octal Serial Peripheral Interface (OSPI) Flash is populated on the SOM as a programmable nonvolatile storage and can also be leveraged as boot media. This guide will walk through how to flash the SOM’s OSPI via U-boot, followed by booting from OSPI. For more information on OSPI, please see the phyCORE-AM64x Hardware Manual [https://www.phytec.com/product/phycore-am64x/#section-hardware-documentation].

Flashing the OSPI Flash is detailed in its dedicated chapter, referenced as Flashing the SPI NOR Flash.

Boot from OSPI

The phyCORE-AM64x development kit is configured to boot from an SD Card slot by default. This guide will serve to provide basic steps for booting from the SOM’s onboard OSPI flash memory after it has been flashed.

	Keep the bootable SD card inserted in the kit if you want to boot all the way into Linux.

Due to the OSPI NOR Flash’s limited size, the steps above only flash the bootloader. The SD card still contains the kernel and root filesystem for the BSP image.

	S10 should be ON

[image: ../_images/pb-07225_boot-ospi.png]
[image: phyCORE-AM64x Boot Switches]

Note

Be mindful of the switch orientation!

	Once you boot into linux, in order to populate the /dev directory, you must run the following command. Once /dev is populated, you can write to the eMMC.

phyboard-electra-am64xx-2:~# mount -t devtmpfs udev /dev

 UART

UART

During development, it may be beneficial to leverage the primary UART debug interface for loading your boot binaries onto the phyCORE-AM64x development kit. This guide will walk through the process of booting into U-Boot via UART.

Preparing the Development Kit

The phyCORE-AM64x development kit is configured to boot from an SD Card slot by default and basic steps for performing this and establishing serial communication are outlined in the Quickstart.
We need to modify the default boot configuration to UART Boot AND connect the development kit’s Debug UART interface to your Ubuntu Host Machine (these steps are not currently supported from a Windows Host Environment).

	S10 should be ON to override the default boot settings.

[image: UART Boot Switch Settings]
[image: phyBOARD-AM64x Boot Switch Location]

	Once configured, connect your phyCORE-AM64x development kit’s Debug UART interface to your Ubuntu Host Machine. This can typically be done in the Virtual Machine settings but exact steps vary depending on the VM software you are using.

Note

	This guide assumes the following:
	
	The console is connected to ttyUSB0 of the Ubuntu Host Machine.

	lrzsz package is installed on the Ubuntu Host Machine. To install lrzsz, run:

host:~$ sudo apt update && sudo apt install lrzsz

	Make sure you are part of the dialout group.

host:~$ sudo usermod -a -G dialout <username>

Note

You may need to restart your computer for the dialout permission to take effect.

	Power-on the development kit.

	To test your setup thus far, open a serial console within your Ubuntu Host Machine:

	Use the following command to start a serial connection with the development kit:

host:~$ minicom -b 115200 -D /dev/ttyUSB0

	In UART Boot mode, you should see the following string of characters printed to the terminal:

minicom Session

01000000011a0000616d36327800000000000000475020200100010001000100C

	You should also see the final “C” character continuously printed to the terminal.

	You must now close the minicom session for the remaining steps to work. To close minicom, first enter Ctrl-A and then hit the X key (Ctrl-A and then the Z key will give you a command reference for more options).

Loading the Bootloader Binaries

Enter the following commands in your Ubuntu Host Machine in order to load the multiple stages of the bootloaders in sequence. The files can be found at Pre-Built Binaries or built using Build the BSP. Be sure to replace the “<path to>” substring within each command to reflect the appropriate filesystem path your build system has these files stored.

host:~$ stty -F /dev/ttyUSB0 115200
host:~$ sb --xmodem <path to>/tiboot3.bin > /dev/ttyUSB0 < /dev/ttyUSB0
host:~$ sb --xmodem <path to>/tiboot3.bin > /dev/ttyUSB0 < /dev/ttyUSB0
host:~$ sb --ymodem <path to>/tispl.bin > /dev/ttyUSB0 < /dev/ttyUSB0
host:~$ sb --ymodem <path to>/u-boot.img > /dev/ttyUSB0 < /dev/ttyUSB0

Once complete, you can reopen minicom to access the U-Boot console:

host:~$ minicom -b 115200 -D /dev/ttyUSB0

 Copying Files to the Device

Copying Files to the Device

There are several ways of transferring files to and from your target device. Please reference the following for some possible methods.

Using a Network

Note

Before being able to transfer files using network protocols, you will first need to establish a network connection and know the ip address of the target device. See the Ethernet interface guide for more information.

Secure Copy Protocol

Secure Copy Protocol (SCP) is built around a Secure Shell connection (SSH) and offers all the same security features. One advantage of using this method for transferring single files is that it is generally pretty fast but you won’t get interactive functionality when pulling multiple files from a remote server. For example, you won’t be able to list out directory contents and see what other files are available. SCP also has no file size limitations.

	Using the Terminal on your host machine, navigate to the directory containing the file you wish to transfer to the target device.

host:~$ cd <insert-path-to-files>

	Use the following command to transfer your file:

host:~$ sudo scp <insert-name-of-file> root@<insert-IP-address>:~

	Your copied file will appear in the root directory on the target device.

	To go the other direction and retrieve files from the Target Hardware, just flip the source and destination arguments:

host:~$ sudo scp root@<insert-IP-address>:<insert-name-of-file> <insert-path-to-destination>

Using Removable Storage Devices

USB Storage Device

These instructions walkthrough exercising the USB host interface on the development kit, but since your Ubuntu Host Machine is also a Linux system, you can similarly transfer files to the same storage media to exchange files.

The USB0 interface uses a USB hub to split the bus to 4x locations.

USB Locations

	Type

	Qty

	Header Location

	Speed

	Bus

	USB A Double Stacked

	2

	X13

	3.1

	002

	Mini PCIe

	1

	X31

	2.0

	001

	Pin Header

	1

	X27 (Pin 21, 22, 37, 39)

	2.0

	001

Warning

The USB super speed signals are muxed between the miniPCIe interface and the USB HUB. Enabling miniPCIe (done via device tree overlay) will disable USB3.0 speeds at the stacked type-A USB connector but USB2.0 speeds will still be available. See all the available overlays in pre-built image link on Pre-Built Binaries guide.

What You Will Need

	USB Storage Device

Verifying USB Interface

	With the phyCORE-AM64x development kit booted into Linux, see that there are 4 USB devices. There should be 2 devices on each bus.

phyboard-electra-am64xx-2:~# lsusb

Expected Output

phyboard-electra-am64xx-2:~# lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller
Bus 001 Device 002: ID 0451:8242
Bus 001 Device 001: ID 1d6b:0002 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller

	Insert a USB3.0 storage device into the top connector on X13. You should see something like the following on the serial console:

Expected Output

phyboard-electra-am64xx-2:~# [30.428000] usb 1-1.1: new high-speed USB device number 4 using xhci-hcd
[30.532866] usb 1-1.1: New USB device found, idVendor=0781, idProduct=5591, bcdDevice= 1.00
[30.541258] usb 1-1.1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[30.548583] usb 1-1.1: Product: SanDisk 3.2Gen1
[30.553247] usb 1-1.1: Manufacturer: USB
[30.557275] usb 1-1.1: SerialNumber: 0401a83fbd697e437712b826697973aaaf57d1c75e9691ad879dfe7934b8a81bea020000000000000000000037ac13c5ff935d18915581076e2cc649
[30.573038] usb-storage 1-1.1:1.0: USB Mass Storage device detected
[30.580206] scsi host0: usb-storage 1-1.1:1.0
[31.609115] scsi 0:0:0:0: Direct-Access USB SanDisk 3.2Gen1 1.00 PQ: 0 ANSI: 6
[31.622632] sd 0:0:0:0: [sda] 30031872 512-byte logical blocks: (15.4 GB/14.3 GiB)
[31.636317] sd 0:0:0:0: [sda] Write Protect is off
[31.641991] sd 0:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[31.664047] sd 0:0:0:0: [sda] Attached SCSI removable disk

	Verify that the USB was properly recongnized by development kit.

phyboard-electra-am64xx-2:~# lsusb

Expected Output

phyboard-electra-am64xx-2:~# lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller
Bus 001 Device 004: ID 0781:5591 USB SanDisk 3.2Gen1
Bus 001 Device 002: ID 0451:8242
Bus 001 Device 001: ID 1d6b:0002 Linux 6.1.33-bsp-yocto-ampliphy-am64x-pd23.2.0 xhci-hcd xHCI Host Controller

	To list more information about the USB device and buses on the development kit use the following command.

This command will output a good chunk of information. This guide will only show a snippet of the expected output for the USB drive that was just connected.

phyboard-electra-am64xx-2:~# lsusb -v -s 001:004

Note

“001” refers to bus 001 and “004” refers to the device number, both of these can be found in the lsusb command.

Mounting USB Stroage Devices

	Mount the USB device to the directory.

phyboard-electra-am64xx-2:~# mount /dev/sda /mnt/

Note

In this example the device name for the USB drive is “sda”. The device name can be found when plugging the USB drive into the development kit.

	See what media is on the USB drive.

phyboard-electra-am64xx-2:~# ls /mnt/

Read from the USB Host Device

	Copy media from the USB drive to a directory or file onto the target:

phyboard-electra-am64xx-2:~# cp /mnt/<file> <file destination> && sync

Unmounting the Drive

Warning

Make sure the drive is unmounted prior to physically disconnecting the device.
Failure to do so may result in loss of data and corruption of files

phyboard-electra-am64xx-2:~# umount /mnt/

SD Card (Root Partition)

Since our Host Machines have access to the SD Card readers, we can use the bootable SD Card itself to transfer files to and from the development kit too, the only down side for this is that you will want to power off the development kit before removing the primary booting device.

	Power off the development kit.

phyboard-electra-am64xx-2:~# poweroff

	Remove the SD card and connect it to your Linux machine via an SD card reader.

Note

You will not be able to place files on the SD card using Windows because the SD Card is formatted for Linux. Windows does not recognize the format.

The SD Card is formatted with a minimal root filesystem size by default and in order to transfer larger files it may become necessary to increase its size to take advantage of the full size of the SD Card.

	Increase the root filesystem partition of the SD card.

	Run the following command without the SD card connected to the host machine.

host:~$ ls /dev/sd*

	Connect the bootable SD card to your Ubuntu host machine.

	Run the following command with the SD card connected to the host machine.

The SD card device name is of the form /dev/sd[a-z] in Ubuntu and the letter identifier along with any partitions (signified by the numbers following the letter) on the SD card are enumerated upon connection to the host machine. Look at the second output of the command and look for new devices that appeared there, the new device will correspond to the SD card. Remember the /dev/sdX identifier corresponding to your SD card as you will need to use this in the following step.

host:~$ ls /dev/sd*

	It is best to first backup the SD card to a file just in case something goes terribly wrong and you end up losing its contents:

Warning

Be confident you have the correct */dev/sdX* device identified for your SD card before proceeding. Specifying the incorrect disk using the ‘fdisk’ utility in the steps below can potentially destroy your Machine and will require you to set it back up again from scratch.

host:~$ umount /dev/sdX* #unmount the entire SD Card, not just any single partition
host:~$ sudo dd if=/dev/sdX of=~/backup.sdcard bs=1M && sync

	Use the fdisk utility and provided command sequence to create a new, larger root filesystem partition in the SD card’s partition table:

host:~$ sudo fdisk /dev/sdX

fdisk is an interactive utility, use the following command sequence
p (print the partition table and note the starting sector of the 2nd partition, call this START2. START2=196608 using the pre-built software)
d (delete a partition)
2 (select the root filesystem)
n (create a new partition)
p (make it a primary partition)
2 (make it the second partition)
START2 (specify the same starting sector for the 2nd partition as before)
ENTER (just hit ENTER to use the default size, which will automatically use up the remaining space on the SD Card)
w (write the changes)

	Disconnect and reconnect the SD card from the host machine at this point to ensure the new partition table is being picked up by the kernel.

	Finally, grow the root filesystem to take up the entire space in the partition:

host:~$ sudo resize2fs /dev/sdX2

	Drag and drop the file to the rootfs partition of the SD card using the GUI.

	In order to copy files to the SD card using the terminal, this can be done with the standard ‘cp’ (copy) command. See the above section “Transfering Media from Target” for more information.

	The next time you boot your phyCORE-AM64x into Linux, using the same SD Card, your file should be present in the filesystem.

 Configuring the Bootloader

Configuring the Bootloader

Change the Device Tree

By default, U-Boot loads a device tree binary (dtb) file named oftree during boot. The oftree file is a copy of k3-am625-phyboard-lyra-rdk.dtb. This portion of the guide will instruct how to change U-boot to load different device trees.

	Power on the board and press any key to stop autoboot when prompted by the Bootloader.

	Use the following command to list the available file’s within the boot media’s Boot partition (this is typically where binaries used for boot are stored):

uboot:~# ls mmc 1:1

Example Output

uboot:~# ls mmc 1:1
 EFI/
21336576 Image
 361 k3-am6-phycore-disable-eth-phy.dtbo
 234 k3-am6-phycore-disable-rtc.dtbo
 235 k3-am6-phycore-disable-spi-nor.dtbo
 1627 k3-am64-phyboard-electra-gpio-fan.dtbo
 1715 k3-am64-phyboard-electra-pcie-usb2.dtbo
 1356 k3-am64-phyboard-electra-x27-uart3-spi1.dtbo
 61269 k3-am642-phyboard-electra-rdk.dtb
 61269 oftree
 508394 tiboot3.bin
 907823 tispl.bin
 961379 u-boot.img

	We can check which file is the active device tree like so:

uboot:~# printenv fdtfile

	Change the default device tree.

uboot:~# setenv fdtfile <dtb name>
uboot:~# saveenv
uboot:~# boot

U-boot will now load the dtb file named ‘<dtb name>’ automatically during subsequent boots (just replace it with the appropriate file name when you run the command).

Working with Overlays

The PHYTEC BSP also comes with some device tree overlays to help evaluate certain interfaces and accessory hardware. The table “Linux Device Tree Summary [https://docs.phytec.com/projects/yocto-phycore-am64x/en/bsp-yocto-ampliphy-am64x-pd23.2.1/releasenotes/pd23.2.1.html#linux-device-tree-summary] in the Release Notes shows an overview of all available overlays.

Enable an Overlay

	U-boot has an extra environment variable called “overlays” to apply device tree overlay files. We can enable device tree overlays with it like so:

uboot:~# setenv overlays k3-am62-phyboard-lyra-vm016-mipi.dtbo
uboot:~# saveenv
uboot:~# boot

	Moreover, it’s possible to enable multiple overlays by separating them with a space.

uboot:~# setenv overlays k3-am64-phyboard-electra-rdk-pcie-usb2.dtbo k3-am64-phyboard-electra-gpio-fan.dtbo
uboot:~# saveenv
uboot:~# boot

The saveenv command stores the boot environment to non-volatile memory. If you would like temporarily adjust the boot environment, you can omit the saveenv command and the boot environment will go back to the previously saved settings on the next boot.

Reset the U-Boot Environment to Default Settings

	In order to revert the U-Boot environment back to its original settings, run the following:

uboot:~# env default -f -a
uboot:~# saveenv
uboot:~# boot

Note

When booting from the SD card, if you have saved changes to the environment using saveenv, the changes may persist across flashes of the SD card. It is a good idea to default your environment after flashing.

 Installing the OS

Installing the OS

This chapter focuses on the process of flashing a clean eMMC/SPI flash with an operating system. It covers two main boot sources: eMMC and SPI flash. We’ll focus on exploring the steps necessary for efficient OS flashing after the SOM has successfully booted into the bootloader or Linux shell.

	Flashing the eMMC

	Flashing the SPI NOR Flash

 Flashing the eMMC

Flashing the eMMC

Before proceeding further, it’s recommended to familiarize yourself with the foundational concepts detailed in the Booting Essentials chapter. It will provides instructions on how to initiate the device from any accessible boot source, enabling you to proceed with the flashing procedure.
Afterwards we’ll explore different approaches to flashing eMMC storage: from an SD card, over a network connection, and via USB or using partup or wic based images.

Flash eMMC from SD Card

By default, the phyBOARD-Electra AM64x is configured to boot from an SD Card. This is generally one of the most convenient methods to boot your hardware throughout development because it allows for easy software updates and file transfers between your Host and target systems. In addition to creating a standard bootable SD card formatted with the phyCORE-AM64x Linux BSP, the following steps can be used to burn bootable software images to the onboard eMMC flash memory of the SOM, thus freeing up the SD Card slot on the carrier board.

The easiest way to access the SOM’s eMMC is to boot the SOM into Linux from an SD Card (you may already be doing this). The Linux instance running from the SD Card will need access to software binaries to flash to the eMMC; thus, we will also need to transfer those binaries to the SD Card so that they are present and accessible at runtime.

Flash eMMC from SD card in U-Boot

	Flash an SD card with a working image and create a third FAT partition. Copy the WIC image (phytec-headless-image-phyboard-electra-am64xx-2.wic) to this partition. By default we deploy a compressed wic.xz file. As u-boot is not able to uncompress it, you should do so on your host machine.

host:~$ unxz phytec-headless-image-phyboard-electra-am64xx-2.wic.xz

	Configure the bootmode switch to SD Card and insert the SD Card.

	Power on the board and stop in U-Boot.

	Load the image:

uboot:~# ls mmc 1:3
<DIR> 4096 .
<DIR> 4096 ..
 609646592 phytec-headless-image-phyboard-electra-am64xx-2.wic

uboot:~# load mmc 1:3 0xA0000000 phytec-headless-image-phyboard-electra-am64xx-2.wic

	Switch the mmc dev to use the eMMC device:

uboot:~# mmc list
mmc@fa10000: 0
mmc@fa00000: 1 (SD)

uboot:~# mmc dev 1
switch to partitions #0, OK
mmc1 is current device

	Flash your WIC image from the SD card to eMMC. This will partition the card and copy bootloader files, Image, dtb, dtbo, and root file system to eMMC:

uboot:~# setexpr nblk ${filesize} / 0x200
uboot:~# mmc write 0xA0000000 0x0 ${nblk}

MMC write: dev # 0, block # 0, count 1190716 ... 1190716 blocks written: OK

Note

This step only works if the size of the image file is less than 1GB due to limited usage of RAM size in the Bootloader as we have marked some RAM regions as reserved for other components such as OPTEE. If the image file is too large use the Updating eMMC from SD card in Linux on Target subsection.

	Update the Bootloader to the eMMC’s dedicated boot0 partition:

Select eMMC boot0 partition
uboot:~# mmc dev 0 1

uboot:~# load mmc 1 ${loadaddr} tiboot3.bin
uboot:~# mmc write ${loadaddr} 0x0 0x400

uboot:~# load mmc 1 ${loadaddr} tispl.bin
uboot:~# mmc write ${loadaddr} 0x400 0x1000

uboot:~# load mmc 1 ${loadaddr} u-boot.img
uboot:~# mmc write ${loadaddr} 0x1400 0x2000

	To give the ROM access to the boot partition, the following commands must be used for the first time:

uboot:~# mmc partconf 0 1 1 1
uboot:~# mmc bootbus 0 2 0 0

	Power off the board and change the bootmode switch to eMMC, see Booting Essentials.

Flash eMMC from SD card in Linux

You can also flash the eMMC on Linux. You only need a partup package or WIC image saved on the SD card.

	Show your saved partup package or WIC image files on the SD card:

phyboard-electra-am64xx-2:~# ls
phytec-headless-image-phyboard-electra-am64xx-2.partup
phytec-headless-image-phyboard-electra-am64xx-2.wic.bmap
phytec-headless-image-phyboard-electra-am64xx-2.wic.xz

	Show list of available MMC devices:

phyboard-electra-am64xx-2:~# ls /dev | grep mmc
mmcblk0
mmcblk0boot0
mmcblk0boot1
mmcblk0rpmb
mmcblk1
mmcblk1p1
mmcblk1p2
mmcblk1p3

Note

The eMMC device can be recognized by the fact that it contains two boot partitions: (mmcblk0boot0; mmcblk0boot1)

	Write the image to the eMMC device (MMC device 0 without partition) using partup:

phyboard-electra-am64xx-2:~# partup install phytec-headless-image-phyboard-electra-am64xx-2.partup /dev/mmcblk0

Flashing the partup package has the advantage of using the full capacity of the eMMC device, adjusting partitions accordingly.

Note

Alternatively, bmaptool may be used instead:

phyboard-electra-am64xx-2:~# bmaptool copy phytec-headless-image-phyboard-electra-am64xx-2.wic.xz /dev/mmcblk0

When utilizing bmap, it becomes necessary to manually update the bootloader files individually. This is due to the fact that wic images store the bootloader files in a distinct FAT/boot partition, which is incompatible with eMMC devices.

phyboard-electra-am64xx-2:~# echo 0 > /sys/class/block/mmcblk0boot0/force_ro
phyboard-electra-am64xx-2:~# dd if=/boot/tiboot3.bin of=/dev/mmcblk0boot0 count=1024 conv=fsync
phyboard-electra-am64xx-2:~# dd if=/boot/tispl.bin of=/dev/mmcblk0boot0 seek=1024 count=3072 conv=fsync
phyboard-electra-am64xx-2:~# dd if=/boot/u-boot.img of=/dev/mmcblk0boot0 seek=5120 count=3072 conv=fsync

The following must be run once per eMMC device in order for it to allow the bootROM to load the bootloaders from it. Once done for a given phyCORE-AM64x SOM, you won’t ever have to do this again for the life of that device.

phyboard-electra-am64xx-2:~# mmc bootpart enable 1 1 /dev/mmcblk0
phyboard-electra-am64xx-2:~# mmc bootbus set single_backward x1 x8 /dev/mmcblk0
phyboard-electra-am64xx-2:~# mmc hwreset enable /dev/mmcblk0

	Power off the development kit and configure the hardware to boot from the onboard eMMC flash. See the section Booting Essentials.

Flash eMMC from Network

The phyBOARD-Electra AM64x has an Ethernet connector and can be updated over a network. Be sure to set up the development host correctly. The IP needs to be set to 192.168.3.10, the netmask to 255.255.255.0, and a TFTP server needs to be available. From a high-level point of view, an eMMC device is like an SD card. Therefore, it is possible to flash the WIC image (<name>.wic) from the Yocto build system directly to the eMMC. The image contains the bootloader, kernel, device tree, device tree overlays, and root file system.

Flash eMMC from Network in U-Boot

Note

This step only works if the size of the image file is less than 1GB due to limited usage of RAM size in the Bootloader as we have marked some RAM regions as reserved for other components such as OPTEE. If the image file is too large use the Updating eMMC from SD card in Linux on Target subsection.

	Load your image via network to RAM:

uboot:~# tftp 0xA0000000 phytec-headless-image-phyboard-electra-am64xx-2.wic

	Write the image to the eMMC:

uboot:~# tftp 0xA0000000 phytec-headless-image-phyboard-electra-am64xx-2.wic
uboot:~# mmc dev 0
uboot:~# setexpr nblk ${filesize} / 0x200
uboot:~# mmc write 0xA0000000 0x0 ${nblk}

	Update the Bootloader to the eMMC’s dedicated boot0 partition:

Target (U-Boot)

Select eMMC boot0 partition
mmc dev 0 1

tftp ${loadaddr} tiboot3.bin
mmc write ${loadaddr} 0x0 0x400

tftp ${loadaddr} tispl.bin
mmc write ${loadaddr} 0x400 0x1000

tftp ${loadaddr} u-boot.img
mmc write ${loadaddr} 0x1400 0x2000

	To give the ROM access to the boot partition, the following commands must be used for the first time:

uboot:~# mmc partconf 0 1 1 1
uboot:~# mmc bootbus 0 2 0 0

	Power off the board and change the bootmode switch to eMMC, see Booting Essentials.

Flash eMMC from Network in Linux

	Download the partup image:

phyboard-electra-am64xx-2:~# tftp -r phytec-headless-image-phyboard-electra-am64xx-2.partup -g 192.168.3.10

	Now copy the image to the eMMC device using partup:

phyboard-electra-am64xx-2:~# partup install phytec-headless-image-phyboard-electra-am64xx-2.partup /dev/mmcblk0

Note

Alternatively, bmaptool may be used instead:

phyboard-electra-am64xx-2:~# tftp -r phytec-headless-image-phyboard-electra-am64xx-2.wic.xz -g 192.168.3.10
phyboard-electra-am64xx-2:~# tftp -r phytec-headless-image-phyboard-electra-am64xx-2.wic.bmap -g 192.168.3.10
phyboard-electra-am64xx-2:~# bmaptool copy phytec-headless-image-phyboard-electra-am64xx-2.wic.xz /dev/mmcblk0

When utilizing bmaptool, it becomes necessary to manually update the bootloader files individually. This is due to the fact that wic images store the bootloader files in a distinct FAT/boot partition, which is incompatible with eMMC devices.

phyboard-electra-am64xx-2:~# echo 0 > /sys/class/block/mmcblk0boot0/force_ro
phyboard-electra-am64xx-2:~# dd if=/boot/tiboot3.bin of=/dev/mmcblk0boot0 count=1024 conv=fsync
phyboard-electra-am64xx-2:~# dd if=/boot/tispl.bin of=/dev/mmcblk0boot0 seek=1024 count=3072 conv=fsync
phyboard-electra-am64xx-2:~# dd if=/boot/u-boot.img of=/dev/mmcblk0boot0 seek=5120 count=3072 conv=fsync

The following must be run once per eMMC device in order for it to allow the bootROM to load the bootloaders from it. Once done for a given phyCORE-AM64x SOM, you won’t ever have to do this again for the life of that device.

phyboard-electra-am64xx-2:~# mmc bootpart enable 1 1 /dev/mmcblk0
phyboard-electra-am64xx-2:~# mmc bootbus set single_backward x1 x8 /dev/mmcblk0
phyboard-electra-am64xx-2:~# mmc hwreset enable /dev/mmcblk0

	Power off the board and change the bootmode switch to eMMC, see Booting Essentials.

Flash eMMC from Network in Linux from Host perspective

	Download the partup image from our downloads server, see Pre-Built Binaries.

	Copy the image to the target:

host:~$ scp phytec-headless-image-phyboard-electra-am64xx-2.partup root@192.168.3.11

	Flash using partup:

host:~$ ssh root@192.168.3.11 "partup install phytec-headless-image-phyboard-electra-am64xx-2.partup /dev/mmcblk0"

	Power off the board and change the bootmode switch to eMMC, see Booting Essentials.

Flash eMMC from USB

The phyBOARD-Electra AM64x provides two USB 2.0 Dual-Role Devices (DRD) subsystems via the three USB connectors (X43, X36, and X34). This guide will show you how to utilize the USB interface for flashing the eMMC device, either by using USB/DFU or a simple USB flash drive.
The only requirement for flashing from a USB flash drive is a USB drive containing all relevant bootloader images and a phytec-headless-image-phyboard-electra-am64xx-2.partup or phytec-headless-image-phyboard-electra-am64xx-2.wic.

Flash eMMC from USB flash drive in U-Boot

	Load your image from USB drive to RAM:

uboot:~# usb start
uboot:~# load 0xA0000000 phytec-headless-image-phyboard-electra-am64xx-2.wic

	Write the image to the eMMC:

uboot:~# mmc dev 0
uboot:~# setexpr nblk ${filesize} / 0x200
uboot:~# mmc write 0xA0000000 0x0 ${nblk}

	Update the Bootloader to the eMMC’s dedicated boot0 partition:

Select eMMC boot0 partition
uboot:~# mmc dev 0 1

uboot:~# load usb 0 ${loadaddr} tiboot3.bin
uboot:~# mmc write ${loadaddr} 0x0 0x400

uboot:~# load usb 0 ${loadaddr} tispl.bin
uboot:~# mmc write ${loadaddr} 0x400 0x1000

uboot:~# load usb 0 ${loadaddr} u-boot.img
uboot:~# mmc write ${loadaddr} 0x1400 0x2000

	To give the ROM access to the boot partition, the following commands must be used for the first time:

uboot:~# mmc partconf 0 1 1 1
uboot:~# mmc bootbus 0 2 0 0

Flash eMMC from USB flash drive in Linux

	Mount your USB flash drive:

phyboard-electra-am64xx-2:~# mkdir /mnt/usb
phyboard-electra-am64xx-2:~# mount /dev/sda1 /mnt/usb

	Write the image to the eMMC device (MMC device 0 without partition) using partup:

phyboard-electra-am64xx-2:~# partup install /mnt/usb/phytec-headless-image-phyboard-electra-am64xx-2.partup /dev/mmcblk0

Flashing the partup package has the advantage of using the full capacity of the eMMC device, adjusting partitions accordingly.

Note

Alternatively, bmaptool may be used instead:

phyboard-electra-am64xx-2:~# bmaptool copy /mnt/usb/phytec-headless-image-phyboard-electra-am64xx-2.wic.xz /dev/mmcblk0

When utilizing bmaptool, it becomes necessary to manually update the bootloader files individually. This is due to the fact that wic images store the bootloader files in a distinct FAT/boot partition, which is incompatible with eMMC devices.

phyboard-electra-am64xx-2:~# echo 0 > /sys/class/block/mmcblk0boot0/force_ro
phyboard-electra-am64xx-2:~# dd if=/mnt/usb/tiboot3.bin of=/dev/mmcblk0boot0 count=1024 conv=fsync
phyboard-electra-am64xx-2:~# dd if=/mnt/usb/tispl.bin of=/dev/mmcblk0boot0 seek=1024 count=3072 conv=fsync
phyboard-electra-am64xx-2:~# dd if=/mnt/usb/u-boot.img of=/dev/mmcblk0boot0 seek=5120 count=3072 conv=fsync

The following must be run once per eMMC device in order for it to allow the bootROM to load the bootloaders from it. Once done for a given phyCORE-AM64x SOM, you won’t ever have to do this again for the life of that device.

phyboard-electra-am64xx-2:~# mmc bootpart enable 1 1 /dev/mmcblk0
phyboard-electra-am64xx-2:~# mmc bootbus set single_backward x1 x8 /dev/mmcblk0
phyboard-electra-am64xx-2:~# mmc hwreset enable /dev/mmcblk0

	Power off the development kit and configure the hardware to boot from the onboard eMMC flash. See the section Booting Essentials.

RAUC

The RAUC (Robust Auto-Update Controller) mechanism support has been added to meta-ampliphy. It controls the procedure of updating a device with new firmware. This includes updating the Linux kernel, Device Tree, and root filesystem. PHYTEC has written an online manual on how we have intergraded RAUC into our BSPs: L-1006e.A5 RAUC Update & Device Management Manual [https://www.phytec.de/cdocuments/?doc=F4DiM].

 Flashing the SPI NOR Flash

Flashing the SPI NOR Flash

Before proceeding further, it’s recommended to familiarize yourself with the foundational concepts detailed in the Booting Essentials chapter. It will provides instructions on how to initiate the device from any accessible boot source, enabling you to proceed with the flashing procedure. Afterwards we’ll explore different approaches to flashing NOR flash: from an SD card or over a network connection.

The phyCORE-AM64x modules are optionally equipped with SPI NOR Flash. The SPI NOR flash partition table is defined in the U-Boot-only device tree k3-am642-phyboard-electra-rdk-u-boot.dtsi. It can be printed with:

uboot:~# mtd list
SF: Detected mt35xu512aba with page size 256 Bytes, erase size 4 KiB, total 64 MiB
List of MTD devices:
* nor0
 - device: flash@0
 - parent: spi@fc40000
 - driver: jedec_spi_nor
 - path: /bus@f0000/bus@fc00000/spi@fc40000/flash@0
 - type: NOR flash
 - block size: 0x1000 bytes
 - min I/O: 0x1 bytes
 - 0x000000000000-0x000004000000 : "nor0"
 - 0x000000000000-0x000000080000 : "ospi.tiboot3"
 - 0x000000080000-0x000000280000 : "ospi.tispl"
 - 0x000000280000-0x000000680000 : "ospi.u-boot"
 - 0x000000680000-0x0000006c0000 : "ospi.env"
 - 0x0000006c0000-0x000000700000 : "ospi.env.backup"
 - 0x000000700000-0x000000800000 : "ospi.dtb"
 - 0x000000800000-0x000001e00000 : "ospi.kernel"
 - 0x000001e00000-0x000004000000 : "ospi.rootfs"

In this chapter, we will explore proceduress of flashing the OSPI NOR flash, starting from the point after the u-boot bootloader has successfully booted.

Flash SPI NOR Flash from SD Card

Flash SPI NOR from SD Card in U-Boot

The easiest way to access the SOM’s OSPI is to boot the SOM into U-Boot from an SD card (you may already be doing this). This guide will require a “Bootable SD card”, an SD card that has been flashed with the development kit’s BSP image. For instructions on how to create a bootable SD card, see this guide SD Card.

	Power on the development kit and hit any key to stop in U-Boot.

Note

Be sure that you are booting the kit from SD card!

	Within U-Boot, flash both SPLs and the U-Boot image into the OSPI storage device.

uboot:~# mtd list

uboot:~# load mmc 1 ${loadaddr} tiboot3.bin
uboot:~# mtd write ospi.tiboot3 ${loadaddr} 0 ${filesize}

uboot:~# load mmc 1 ${loadaddr} tispl.bin
uboot:~# mtd write ospi.tispl ${loadaddr} 0 ${filesize}

uboot:~# load mmc 1 ${loadaddr} u-boot.img
uboot:~# mtd write ospi.u-boot ${loadaddr} 0 ${filesize}

Note

If the flashing process did not worked, try to erase the mtd partition first using mtd erase <mtdname>.

You can also include an initramfs and kernel on the OSPI NOR, which will allow you to boot into Linux using OSPI. Again, you will need to be booted into U-Boot with an SD card, and this guide also expects that you have a USB drive with an initramfs image on it. The name of the initramfs image will vary depending on what machine you are using.

uboot:~# load mmc 1 ${loadaddr} k3-am642-phyboard-electra-rdk.dtb
uboot:~# mtd write ospi.dtb ${loadaddr} 0 ${filesize}
uboot:~# setenv size_fdt $filesize

uboot:~# load mmc 1 ${loadaddr} Image
uboot:~# mtd write ospi.kernel ${loadaddr} 0 ${filesize}
uboot:~# setenv size_kern $filesize

uboot:~# usb start

uboot:~# load usb 0 ${loadaddr} phytec-initramfs-phyboard-electra-am64xx-2.cpio.xz
uboot:~# mtd write ospi.rootfs ${loadaddr} 0 ${filesize}
uboot:~# setenv size_fs $filesize

uboot:~# saveenv

uboot:~# env export -c ${loadaddr}
uboot:~# sf update ${loadaddr} 0x680000 ${filesize}
uboot:~# sf update ${loadaddr} 0x6c0000 ${filesize}

Flash SPI NOR from SD Card in Linux

	If you have booted using the phytec-headless-image-phyboard-electra-am64xx-2.wic image, you can find all required bootloader binaries in the automatically mounted /boot/ directory.

phyboard-electra-am64xx-2:~# ls /boot
tiboot3.bin*
tispl.bin*
u-boot.img*
...

	Find the number of blocks to erase of the U-boot partition:

phyboard-electra-am64xx-2:~# mtdinfo /dev/mtd0
mtd0
Name: fc40000.spi.0
Type: nor
Eraseblock size: 131072 bytes, 128.0 KiB
Amount of eraseblocks: 512 (67108864 bytes, 64.0 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false

	Erase the U-Boot partition and flash it:

phyboard-electra-am64xx-2:~# flash_erase /dev/mtd0 0 512
phyboard-electra-am64xx-2:~# flashcp /boot/tiboot3.bin /dev/mtd0
phyboard-electra-am64xx-2:~# flashcp /boot/tispl.bin /dev/mtd1
phyboard-electra-am64xx-2:~# flashcp /boot/u-boot.img /dev/mtd2

Flash SPI NOR Flash from Network

Flash SPI NOR from Network in U-Boot

Similar to updating the eMMC over a network, be sure to set up the development host correctly. The IP needs to be set to 192.168.3.10, the netmask to 255.255.255.0, and a TFTP server needs to be available. Before reading and writing to the MTD partitions is possible, the MTD list needs to be initilized:

uboot:~# mtd list
SF: Detected mt35xu512aba with page size 256 Bytes, erase size 4 KiB, total 64 MiB
List of MTD devices:
* nor0
 - device: flash@0
 - parent: spi@fc40000
 - driver: jedec_spi_nor
 - path: /bus@f0000/bus@fc00000/spi@fc40000/flash@0
 - type: NOR flash
 - block size: 0x1000 bytes
 - min I/O: 0x1 bytes
 - 0x000000000000-0x000004000000 : "nor0"
 - 0x000000000000-0x000000080000 : "ospi.tiboot3"
 - 0x000000080000-0x000000280000 : "ospi.tispl"
 - 0x000000280000-0x000000680000 : "ospi.u-boot"
 - 0x000000680000-0x0000006c0000 : "ospi.env"
 - 0x0000006c0000-0x000000700000 : "ospi.env.backup"
 - 0x000000700000-0x000000800000 : "ospi.dtb"
 - 0x000000800000-0x000001e00000 : "ospi.kernel"
 - 0x000001e00000-0x000004000000 : "ospi.rootfs"

Flash both SPLs and the U-Boot image into the OSPI storage device.

Target (U-Boot)

tftp ${loadaddr} tiboot3.bin
mtd write ospi.tiboot3 ${loadaddr} 0 ${filesize}

tftp ${loadaddr} tispl.bin
mtd write ospi.tispl ${loadaddr} 0 ${filesize}

tftp ${loadaddr} u-boot.img
mtd write ospi.u-boot ${loadaddr} 0 ${filesize}

Flash SPI NOR from Network in Linux

	Make sure all three bootloader binaries are available on the target, e.g. by copying them via scp:

host:~$ scp tiboot3.bin tispl.bin u-boot.img root@192.168.3.11:/root

	Find the number of blocks to erase of the U-boot partition:

phyboard-electra-am64xx-2:~# mtdinfo /dev/mtd0
mtd0
Name: fc40000.spi.0
Type: nor
Eraseblock size: 131072 bytes, 128.0 KiB
Amount of eraseblocks: 512 (67108864 bytes, 64.0 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false

	Erase the U-Boot partition and flash it:

phyboard-electra-am64xx-2:~# flash_erase /dev/mtd0 0 512
phyboard-electra-am64xx-2:~# flashcp tiboot3.bin /dev/mtd0
phyboard-electra-am64xx-2:~# flashcp tispl.bin /dev/mtd1
phyboard-electra-am64xx-2:~# flashcp u-boot.img /dev/mtd2

 Application Development

Application Development

The AM6442 processor from Texas Instruments has a heterogenous, multi-core architecture consisting of 1x dual-core ARM Cortex-A53 cluster, 2x dual-core ARM Cortex-R5F MCU clusters, 1x single-core ARM Cortex-M4F MCU and an advanced gigabit industrial communication subsystem giving you access to as many as 12x PRU RISC cores.

The big advantage of such a feature-rich application processor, such as the AM6442, is that you can run a high-level operating system such as Linux on the dual-core Cortex-A cluster while offloading computationally heavy or critical, real-time tasks to the MCU co-processors. Taking advantage of the various compute clusters can yield far simpler hardware designs when developing complex embedded systems (since you can consolidate a lot of functionality into one chip). There are many ways to structure your application software to leverage these compute clusters and you will want to choose what makes the most sense for your use case.

Tip

If multi-core application development is a new concept, here is a hypothetical example that could help clear up confusion:

You might leverage Linux to connect your embedded system to your cloud infrastructure via a TCP/IP network while offloading time-critical motor-control and sensor data-collection to a MCU co-processor. The MCU core could pass sensor data to Linux on some interval, where it can be buffered and sent to the cloud. By structuring your application in this hypothetical way you can ensure your time-critical task continues to run with the lowest possible latency without regards to the network being available or not, and at the same time take advantage of the rich networking support available in Linux.

There are two primary routes for application development when it comes to the AM6442 processor:

	Linux Application Development

	MCU+ SDK Application Development

Applications intended to run within Linux (the Cortex-A53 cluster) can be built using a cross-compilation toolchain generated with the Yocto Linux BSP (or natively from within Linux running on the AM6442 itself). Checkout the Linux Application Development guide for more information on Linux application development.

Applications intended to run on the MCU co-processors (Cortex-R5F, Cortex-M4F, etc) are provided in a separate BSP known as the MCU+ SDK. Checkout the MCU+ SDK Application Development guide for more information on MCU Applications.

 Linux Application Development

Linux Application Development

This section of the developer wiki contains guides for common development tasks associated with writing Linux applications for the phyCORE-AM64x SOM.

Embedded application development for systems running Linux can generally be approached in two ways; Native and Cross-Platform application development.

Native application development involves writing and compiling applications directly on the system the application is intended to run. In practice, this would look like:

	Boot a PHYTEC Development Kit into Linux.

	Use Serial or SSH to gain access to the target system’s shell (a shell allows users to directly interact with an operating system via a command line interface).

	Write your application directly on the target system using text editors included within the target’s operating system distribution.

	Compile your application using a toolchain included within the target’s operating system distribution.

	Run the application directly on the target system.

Native application development is a great option for small, quick-turn prototypes or projects where you want to try out something quickly.

However, you’ll find as your projects grow in complexity that the compute resources available to your resource-constrained embedded device may be insufficient; this can culminate in projects taking a very long time to compile. Furthermore, you may find the development tools available on embedded systems to be limiting. An easy example is that you won’t have any graphical text editors available!

Cross-Platform application development generally involves leveraging a second, more powerful “Host Machine” or “Build Server” with access to greater compute resources and development tools. This might look like:

	Boot up a Linux Host Machine (A good example of this could be a x86 desktop computer with 16 cores, 32GB of RAM and operates at 5GHz+. This also could be much much more if setup in the cloud! Compare those stats to just about any embedded system and it should be clear what has the advantage).

	Install a SDK or standalone cross-compilation toolchain. Cross-compilation toolchains work on one kind of system architecture (x86 in our example), and compile applications to run on another architecture (in this case our target system would be the phyCORE-AM64x).

	Write and cross-compile the application on the Host Machine.

	Transfer the cross-compiled binary to the target system and then run it (attempting to run cross-compiled binaries on the Host Machine will not work).

Cross-compilation development environments usually take a little more work upfront to initially setup but can ultimately provide more compute resources and development tools to developers.

For a quick introduction to both methods, checkout the Hello World guide, among the others:

	Install The Yocto SDK

	Hello World

	Blink

	Podman

 Install The Yocto SDK

Install The Yocto SDK

Cross Compile Stuff!

Note

The video linked here is a little out of date now but it is still a good introduction to cross compilation development. For release-specific commands, refer to the guide.

 Hello World

Hello World

This guide will walkthrough the creation and compilation of a Hello World executable intended to run directly on the phyCORE-AM64x Development Kit running Linux.

Native Compilation (On the Target)

Target Image Setup

By default, the BSP-Yocto-Ampliphy-AM64x-PD23.2.1 phytec-headless-image doesn’t include build tools such as gcc, make, git, etc. In order to build your applications on the target natively, these packages will have to be added to your target image first.

First, complete the setup steps outlined in the Build the BSP guide.

Once setup, modify your $BUILDDIR/conf/local.conf:

Host (Linux)

vi $BUILDDIR/conf/local.conf

Add the following line to the end of the file:

$BUILDDIR/conf/local.conf

IMAGE_INSTALL:append = " packagegroup-core-buildessential"

Now rebuild your target image and then use it to boot your phyCORE-AM64x Development Kit into Linux.

host:~$ bitbake phytec-headless-image

Write your HelloWorld Code

Let’s make a project directory to contain the Hello World source code:

phyboard-electra-am64xx-2:~# mkdir ~/helloworld-project
phyboard-electra-am64xx-2:~# cd ~/helloworld-project

Create the main Hello World application source code file using your favorite text editor, this guide will leverage ‘vi’ but ‘nano’ is a more beginner friendly option:

phyboard-electra-am64xx-2:~# vi helloworld.c

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Edit the contents of the file to reflect the following and remember to save your changes when you are done!

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
}

Compile the project.

phyboard-electra-am64xx-2:~# gcc -O helloworld.c -o helloworld

Run the binary:

phyboard-electra-am64xx-2:~# ./helloworld

You should see the following output:

Example Output

phyboard-electra-am64xx-2:~# ./helloworld
Hello World!

Cross-Compilation (On a Linux Host Machine)

Once you follow the Build the BSP guide to help you build a SDK installer (or install a pre-built one), and then run through the Install The Yocto SDK guide to install it and then source it, you can leverage the computing resources and development tools available to your Linux Host Machine to compile applications intended to run on the phyCORE-AM64x Development Kit.

Basically, you can create the helloworld.c file using the same steps above using your Linux Host Machine’s Terminal and then use the cross-compilation toolchain to compile your application to run on a different architecture (in this case it would be the ARM architecture):

Host (Linux)

$CC -O helloworld.c -o helloworld

Once built, you can confirm the target architecture the binary is intended for using the ‘file’ utility:

host:~$ file helloworld
hello: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, BuildID[sha1]=71f34ddf90d981cb429087646d6b39c629dec800, for GNU/Linux 3.7.0, with debug_info, not stripped

You’ll notice errors if you try to run this binary on the Host Machine. Check out the Copying Files to the Device Guide to help you transfer it to the phyCORE-AM64x Development Kit such that you can execute it.

 Blink

Blink

C it Blink!

 Podman

Podman

The phyCORE-AM64x supports Podman. You can use Podman to development your applications then deploy them to the phyCORE-AM64x. You can test Podman out using the commands below.

	Run the hello-world image:

phyboard-electra-am64xx-2:~# podman run hello-world

	Select the docker.io/library/hello-world image

	The image should run and print a message telling you that it was successful

	Show a list of all the images you have using this command:

phyboard-electra-am64xx-2:~# podman images

	View all currently running images with:

phyboard-electra-am64xx-2:~# podman ps

	Stop the latest container with:

phyboard-electra-am64xx-2:~# podman stop -l

	Remove the lastest container entirely with:

phyboard-electra-am64xx-2:~# podman rm -l

For more information, check out the official Podman documentation [https://podman.io/docs].

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

 MCU+ SDK Application Development

MCU+ SDK Application Development

[image: An overview of MCU application development]

	MCU+ SDK Host Setup

	Building an Application

	Running the Firmware

 MCU+ SDK Host Setup

MCU+ SDK Host Setup

This guide will assist you in setting up your Host Environment for the development of applications targeting the MCU co-processors of the AM64XX application processor.

	Work through the “Download and Install Additional SDK Tools” section at the following link. You do not need to download the SDK itself, you will just need the Additional SDK Tools

Note

It is a good idea to install all the tools to the ~/ti/ directory.

https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/09_01_00_41/exports/docs/api_guide_am64x/SDK_DOWNLOAD_PAGE.html#autotoc_md13

	Download and install CCS using the instructions at the link below.

Note

Install CCS in the same directory you installed the other tools.

https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/09_01_00_41/exports/docs/api_guide_am64x/CCS_SETUP_PAGE.html

You do not need to go through the “Create Target Configuration” section, just make sure that CCS is installed.

	Now install the PHYTEC fork of the MCU+ SDK. In the same directory that you installed CCS and the MCU+ SDK tools, run the following command:

host:~$ git clone -b mcu_plus_sdk_am64x_09_01_00_41 git@github.com:phytec/mcu-plus-sdk.git

This will clone the AM64x MCU+ SDK to your local machine. Here you will find the PHYTEC example program at “mcu-plus-sdk/examples/drivers/gpio/gpio_led_blink/phyboard-electra-am64xx”. This example contains changes to the example.syscfg and linker.cmd files that allows it to run on the phyCORE-AM64x SOM. You can use this as an example to create your own MCU co-processor project.

 Building an Application

Building an Application

We will use the phyboard-electra-am64xx from the MCU+ SDK as an example for how to build an application for a co-processor.

First make sure you have followed the instructions in MCU+ SDK Host Setup.

	Import the phyboard-electra-am64xx M4F Blink example into the Project Explorer.

Note

On the left of this screen is the “Project Explorer” window in CCS. If you do not see it, try enabling it in the “View” tab.

[image: The location of the "Project Explorer"]

	Navigate to Project -> Import CCS Project

[image: Import a CCS Project]

	In the “Import CCS Projects” popup, choose “Select search-directory” and navigate to ~/ti/mcu_plus_sdk/examples/drivers/gpio/gpio_led_blink/phyboard-electra-am64xx/m4fss0-0_nortos/. The gpio_led_blink example program should appear as a discovered project. Select it, then press finish.

[image: Select the correct CCS project]

This project contains changes to allow the led blink example to run on a phyCORE-AM64x SOM alongside Linux. The linker.cmd file has changes to allow for IPC between Linux and the M4 core, and the example.syscfg file also has changes to enable IPC and select the correct gpio pin for the LED on the SOM. You can compare the phyboard-electra-am64xx files with the corresponding am64x-evm files to see exactly what changes were made.

	To build the project, right click the project name in the Project Explorer and select “Build Project”.

[image: Build a CCS project]

	The binary can now be found in “Debug/gpio_led_blink_phyboard-electra-am64xx_m4fss0-0_nortos_ti-arm-clang.out”

 Running the Firmware

Running the Firmware

Yocto Integration

You can have an MCU domain program built into your image to run alongside Linux at startup. The steps below will show you how to add your own program.

	The recipe used to include the MCU program is located in meta-ampliphy/recipes-examples/phytec-mcu-plus-sdk-firmware_git/mcu-plus-sdk-firmware_git.bb

	You can replace PHYTEC’s mcu-plus-sdk-firmware repository with your own by updating SRC_URI. You will also need to include the proper license file, and update the SRCREV variable to the proper commit from your repo.

	Now you can update the install -m command for the am64xx so that the source path matches the path to your binary in your firmware repository.

Note

You must leave the install destination as it is. The remoteproc driver will look for am64-mcu-m4f0_0-fw as the MCU program to run.

You should now be able to build and see your MCU domain program run.

Running Firmware Without Yocto

If you wish to test your firmware without rebuilding your whole image, you can simply copy your binary onto the target system and run it manually.

	First we should check to make sure that we are targetting the correct core. If we look in /sys/class/remoteproc*, we can find the names of the cores. For example:

phyboard-electra-am64xx-2:~# cat /sys/class/remoteproc/remoteproc0/name

This should output 5000000.m4fss, which tells us that remoteproc0 targets the M4 core.

	Stop the core:

phyboard-electra-am64xx-2:~# echo stop > /sys/class/remoteproc/remoteproc0/state

	Now you can copy your binary over to the target (we recommend using scp), then link it to the existing firmware file.

phyboard-electra-am64xx-2:~# ln -sf /gpio_led_blink_phyboard-electra-am64xx_m4fss0-0_nortos_ti-arm-clang.out /lib/firmware/am64-mcu-m4f0_0-fw

	Now we can start the core:

Target (Linux)

phyboard-electra-am64xx-2:~# echo start > /sys/class/remoteproc/remoteproc0/state

Now your MCU Program should be running.

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

 Building the BSP

Building the BSP

This section of the developer wiki contains guides for common Board Support Package (BSP) development tasks. These common tasks relate to modifying the standard development kit’s software as well as modifying the BSP to add support for custom systems built around the phyCORE-AM64x SOM.

As for suggested workflow, most developers working with PHYTEC SOMs will want to start in one of these two ways:

	Generally, the best place to start is to Build the BSP in its entirety. Doing so will build the bootloader, kernel, rootfilesystem, and many utilities that make up the base Linux distro. Building the BSP gives you access to the source code for all of these components and can serve as a starting point for generating customized production software images.

	If you only need to modify the kernel, you can do so by following the Standalone Kernel Development guide in order to leverage a pre-built SDK to build and then modify your Linux kernel independently. This is much faster than building the BSP in its entirety (you can eventually just export your changes as patches that the BSP can then apply automatically when you are ready).

	Build the BSP

	Modify The BSP

	Create a Custom Meta-Layer

	Standalone Kernel Development

 Build the BSP

Build the BSP

Build the BSP!

Note

The video linked here is a little out of date now but it is still a good introduction to building software images with Yocto. For release-specific commands, refer to the guide.

 Modify The BSP

Modify The BSP

There can be a significant learning curve to working with The Yocto Project and this guide will serve as a resource for developers to quickly test changes to the BSP. After working through this guide, you should be able to comfortably navigate the BSP and manually introduce custom modifications on-top of it in order to evaluate the interfaces and functionality required by your custom application.

Note

In order to follow this guide, you must have first built the BSP in its entirety and have your BSP environment initialized. Checkout the Build the BSP guide if you haven’t yet!

The built BSP has two primary directories at its root and these are the /sources and /build directories. These two directories are significant and here is a summary of why (the paths here may be slightly different for you if you deviated from the instructions):

	~/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/sources - This directory contains meta-layers. Meta-layers are repositories that contain instructions for fetching, building and deploying certain software packages (those instructions are referred to as recipes). Layers can also contain instructions for changing recipes and settings introduced by other layers. This powerful override capability is what allows you to customize the supplied meta-phytec or community layers to suit your product requirements. The instructions included in meta-layers are typically referred to as recipes.

	~/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/build - This directory is used by the build system during the build process and is generally referred to as $BUILDDIR in the documentation (which is a handy environment variable that gets exported automatically when you source the build environment). Packages called for by the build target, as defined by their recipes are fetched, unpacked, compiled and staged for deployment here.

Note

It is important to distinguish between modifying the local sources of a particular package and modifying the recipe for a given package!

If you are new to working with The Yocto Project, then the Yocto Project Overview and Concepts Manual [https://docs.yoctoproject.org/4.0.12/overview-manual/index.html] will be a good document to read through to get a high level understanding of what is going on. The Yocto Project Reference Manual [https://docs.yoctoproject.org/4.0.12/ref-manual/index.html] is the best resource for in-depth documentation regarding directory structure, recipes, tasks, and other aspects of actually working with the BSP’s build system.

Adding Packages to the BSP

The best way to see what packages are available on the target image is to check the image manifest, which is a file that is deployed along with the phytec-headless-image build target. Use the following to open this file:

Host (Linux)

vim $BUILDDIR/deploy/images/phyboard-electra-am64xx-2/phytec-headless-image-phyboard-electra-am64xx-2.manifest

If there is a package that you need that wasn’t included in the target image by default, then you should first check if the package was included in the build tree.

Host (Linux)

cd $BUILDDIR

#lists all available packages
bitbake -s

#search for specific packages by name
bitbake -s | grep <package name>

If the package you need is listed then you can add the package to the image by simply adding the following line to the end of your build’s conf/local.conf file:

conf/local.conf

IMAGE_INSTALL:append = " <package name1> <package name2>"

Adding these packages to the target image by way of the conf/local.conf file is some-what of a temporary way to introduce packages, and you will eventually add these in a more permanent way in your custom meta layer using a machine or distro configuration file (depending on which is more appropriate).

Note

The IMAGE_INSTALL variable can hold a space separated list of packages you wish to add to the default BSP. Note that the leading space in the list is necessary when appending to it!

If the package you need is not listed, then this means that PHYTEC did not include the support for the recipe in the build tree by default. If this is the case, you may need to find a community layer which introduces the recipe/package you need or create your own. Community layers can be searched on the Open Embedded Layer Index [http://layers.openembedded.org/layerindex/branch/kirkstone/layers/], just make sure you are searching the correct Yocto version for your BSP, BSP-Yocto-Ampliphy-AM64x-PD23.2.1 uses Yocto 4.0.12 Kirkstone.

Note

Adding meta-layers to the BSP that aren’t included in the build tree by default is discussed in the Create a Custom Meta-Layer guide.

Modify the Kernel Config

The BSP’s build system also includes kernel development tasks for interacting with the Linux kernel’s own menuconfig tool, which is a graphical tool for configuring the driver support included in the kernel.

In order to launch menuconfig, you’ll need these additional Host dependencies:

host:~$ sudo apt-get install libncurses5-dev libncursesw5-dev

Launch the menuconfig tool with the following command:

host:~$ bitbake linux-ti -c menuconfig

Once menuconfig launches, you can navigate the available configuration options using the arrow keys on your keyboard to enable or disable support as required.

[image: Image of the Linux Kernel's MenuConfig utility for customizing driver support]
Remember to save any changes to the kernel configuration to a .config file before exiting menuconfig.

The .config used by the build system can be found at $BUILDDIR/tmp/work/phyboard_electra_am64xx_2-phytec-linux/linux-ti/6.1.33-phy3-r0.0/build/.config and you could back this up to a safe location outside of the BSP to eventually define your defconfig in your custom meta layer like so:

Host (Linux)

cp $BUILDDIR/tmp/work/phyboard_electra_am64xx_2-phytec-linux/linux-ti/6.1.33-phy3-r0.0/build/.config ~/.config

Note

Files that start with a ‘.’ are typically hidden in the filesystem. If you are having trouble seeing the .config file then try the following command to list everything (including hidden files) in the directory you are searching:

host:~$ ls -a <path to .config>

Feel free to open the .config file with a text editor to verify that your change made it there. You’ll notice that the previous and original .config files are also backed up, which you could diff against to see what has changed.

Once you have saved your changes to the .config using the menuconfig utility, you can force bitbake to re-compile just the kernel to make those changes take a effect:

Host (Linux)

cd $BUILDDIR
bitbake linux-ti -c compile --force && bitbake linux-ti -c deploy --force

The do_deploy task follows the do_compile task and both must be run in order to update the binaries in your deploy directory with the changes. In order for the change to also make its way into the overall target image:

host:~$ bitbake phytec-headless-image

Modify the BSP’s Kernel Source Directly

Once the BSP is built the first time, you will have access to deployed binaries as well as the local sources that were used to build them. It is possible to make changes to these local sources and re-compile them directly in the BSP. This guide will use the linux-ti package as an example but the information outlined here will be applicable to other packages such as the bootloader and others too.

Warning

The Yocto Project isn’t really intended for serious development of the individual packages called for by the recipes in the BSP’s meta-layers, it’s really meant to generate production-ready images. If you are considering significant modifications to the Linux kernel (perhaps you need to port an upstream driver), you are better off cloning the kernel repo independently, outside the scope of the Yocto BSP to focus on that development alone first with a Cross-Compilation toolchain, see Standalone Kernel Development for more information. Once major changes for a package are finalized, a new recipe-append can be created that extends the existing kernel recipe in the BSP and just applies your changes as a set of patches to the base package or just pulls from your own repo and preferred commit ID. Checkout the Standalone Kernel Development guide for more information on this.

Changes made directly to the local sources of a package should not be considered permanent, they can be easily destroyed if the package is cleaned and re-fetched by the build system.

The goal of this guide is to provide you with a way to perform quick and informal changes to the kernel or other packages for testing on the phyCORE-AM64x development kit. This is handy if you need to quickly enable a driver or GPIO instance and you already have the BSP built, for example.

This section of the guide won’t focus on applying changes to the BSP components in the “correct way” by use of a custom meta-layer. For instructions on that process, checkout the Create a Custom Meta-Layer guide when you are ready to begin consolidating all your changes to the stock BSP.

Change the Linux Kernel Device Tree

Let’s try making a small change to the kernel’s device tree and enable a heartbeat LED using the User LED1 (D30) to let us know that the system is alive automatically upon boot (this User LED1 is automatically on by default, checkout the GPIO guide to learn more about controlling it as-is):

[image: LED1 (D30)]
Use your favorite text editor to open the main device tree file for the phyCORE-AM64x development kit:

Host (Ubuntu)

vi $BUILDDIR/tmp/work/phyboard_electra_am64xx_2-phytec-linux/linux-ti/6.1.33-phy3-r0.0/git/arch/arm64/boot/dts/ti/k3-am642-phyboard-electra-rdk.dts

Edit the file according to the following diff:

Device Tree Diff

...
 leds {
 compatible = "gpio-leds";
 pinctrl-names = "default";
 pinctrl-0 = <&leds_pins_default>, <&user_leds_pins_default>;

 led-1 {
- color = <LED_COLOR_ID_RED>;
 gpios = <&main_gpio0 15 GPIO_ACTIVE_HIGH>;
- linux,default-trigger = "mmc0";
- function = LED_FUNCTION_DISK;
+ linux,default-trigger = "heartbeat";
 };

 led-2 {
...

This diff outlines changes to the User LED device node. Essentially, we are changing the default trigger for the LED to “heartbeat” in order to configure it to blink with a heartbeat pattern by default (useful for knowing if the SOM is booted into Linux or not).

Force the Change to Get Compiled

When testing changes applied directly to the build’s local sources (in $BUILDDIR/tmp/work/), the build system will not automatically detect that the local source has changed unless you specifically instruct the build system to recompile it first. This means that you can’t just modify the kernel source at $BUILDDIR/tmp/work/phyboard_electra_am64xx_2-phytec-linux/linux-ti/6.1.33-phy3-r0.0/git and expect the build system to automatically take the change into account the next time phytec-headless-image is built.

The following command should be used after applying some change directly to the local kernel source in the $BUILDDIR/tmp/work/phyboard_electra_am64xx_2-phytec-linux/linux-ti/6.1.33-phy3-r0.0/git, such as we did above when we added the code to enable the heartbeat LED:

Host (Linux)

cd $BUILDDIR
bitbake linux-ti -c compile --force && bitbake linux-ti -c deploy --force

Once the kernel is forcefully recompiled and deployed independently, you can re-deploy it as a part of the overall target image:

host:~$ bitbake phytec-headless-image

Using the newly deployed image to boot the phyCORE-AM64x development kit should quickly confirm that the User LED1 is blinking and that the kernel modification was successfully applied.

Save the Change

Keep in mind that manual changes applied directly to the sources in $BUILDDIR/tmp/work/ are temporary since they aren’t being tracked by the build system yet (the changes will be destroyed upon “cleaning” the package, see below for more information). For this section of the guide, we will assume you made some kernel change (such as the heartbeat LED change demonstrated above) and that you are satisfied enough with the change that you would like it to apply it automatically to the BSP whenever it is built.

The first thing to do is to export the change as a patch file. To do this, navigate to the package repository you modified:

Host (Linux)

cd $BUILDDIR/tmp/work/phyboard_electra_am64xx_2-phytec-linux/linux-ti/6.1.33-phy3-r0.0/git

Before actually creating the patch, you may want to review the changes made to the repository to ensure everything is as you expect it. Use git to do this:

host:~$ git diff
host:~$ git status

Export a patch file based on the current changes applied on-top of the base kernel and save it to a safe location outside the BSP (such as your home directory):

host:~$ git add <modified files>
host:~$ git commit
host:~$ git format-patch -1

Patch files work best when they capture changes that are very specific in their purpose. For example, instead of having one “mega” patch that enables all the unique features of your custom system, break up your customizations such that each patch is responsible for a specific interface or driver. This will make maintaining your meta-layer much easier later on.

Note

Eventually, you will have a set of patches that modify the functionality of the phyCORE-AM64x SOM in a way that is specific to your application requirements and the design of your custom carrier board (if applicable). This collection of patches should eventually be consolidated into a custom Meta-Layer specific to your system and added in a modular way to the BSP. Checkout the Create a Custom Meta-Layer guide when you are ready to begin finalizing your production image.

Clean Packages

When testing changes, it will be necessary to get back to a known working-starting point at some time or another. To do this, all recipes have a do_clean task defined that instructs the build system to delete all the unpacked sources for a given target (including the changes manually applied there). The next time the same package is built, it will be re-unpacked from the cached source tarball which effectively reverts your changes back to their original BSP defaults.

Clean the package:

host:~$ bitbake linux-ti -c clean

Alternatively, the do_cleanall task will delete the unpacked sources AND the cached source tarball. Running the ‘cleanall’ task on a package will require the package sources to be re-fetched on the next build.

Modifying the BSP Sources With ‘devtool’

Modifying the sources directly in the build directory (such as at the source locations described above) is a viable way to test small changes to your target software. In order to do that, you just have to force bitbake to re-run the do_compile and do_deploy tasks for the changed package since the build system won’t know that you changed any sources. One thing to note about this method is that the changes are volatile in that if you clean and rebuild any component of a software image, the changes you have in place will be destroyed (this is because the sources are re-fetched and then re-compiled).

A better method for reliably testing, tracking and incorporating incremental changes to any component or package called for within a Yocto based BSP is to leverage devtool. Devtool can be used to setup workspace environments (that persist between cleans) that allow you to modify components, here is an example:

	Run the following to modify the Linux kernel used in PHYTEC’s BSP-Yocto-Ampliphy-AM64x-PD23.2.1 release:

host:~$ devtool modify linux-ti

You should now see a new ‘workspace’ directory at $BUILDDIR/workspace, this is a workspace meta-layer that is automatically enabled within the BSP’s active layers (listed in conf/bblayers.conf). Changes can be made directly to the linux-ti source at $BUILDDIR/workspace/sources/linux-ti and this directory will automatically be used whenever linux-ti is re-built using bitbake. From here, you could use git to add a remote repository to push changes to and you could export patches for incorporation into your own meta-layer.

Note

devtool is a good method for modifying individual packages called for in a BSP but it still introduces a lot of overhead since you have to leverage the entire Yocto build system (which is best suited for generating production-ready disk images) to iterate changes on individual packages. When applicable, it is better to install a compatible cross-compilation toolchain and perform development on the individual packages, outside of Yocto, to further accelerate development. Checkout the Standalone Kernel Development guide for an example of doing this with the Linux kernel (you can generate your patches faster this way throughout development).

 Create a Custom Meta-Layer

Create a Custom Meta-Layer

Custom Meta Layers!

Note

The video linked here is a little out of date now but it is still a good introduction to creating custom meta layers. For release-specific commands, refer to the guide.

 Standalone Kernel Development

Standalone Kernel Development

Building the BSP in its entirety has a fairly large learning curve and significantly larger system requirements on the Host Machine when compared to building just the individual components of the image. For these reasons (and others), the Yocto Project can be very cumbersome to use as your primary means of developing things like the Linux kernel by itself. When possible, it is best to clone the kernel repo independently of the overall BSP in order to customize it for your application requirements and export your changes back into the BSP to include them into your production image.

The goal of this guide is to provide you with a quick reference for setting up and building the stock BSP-Yocto-Ampliphy-AM64x-PD23.2.1 kernel independently, without The Yocto Project. This can then serve as a starting point for kernel development.

Note

Eventually, you will have a set of patches that modify the Linux kernel such that phyCORE-AM64x SOM is able to meet your unique application requirements. This collection of patches should eventually be consolidated into a custom Meta-Layer specific to your system and added in a modular way to the BSP so that they are incorporated into the production-ready software image automatically. Checkout the Create a Custom Meta-Layer guide when you are ready to begin finalizing your production image.

Requirements

In order to build the kernel repository independently of the overall BSP, you will need to install a compatible toolchain for the phyCORE-AM64x.

	A toolchain is conveniently included in the pre-built SDK so head over to the Install The Yocto SDK guide and run through those steps first if you haven’t already done so.

	Remember to source the cross-compilation environment before attempting to build the kernel. You’ll have to do this with every nw terminal session, even if you have previously installed the SDK. You can’t complete this guide without first doing so.

Clone the Linux kernel

Clone the PHYTEC kernel repository using the release tag corresponding to the BSP version:

host:~$ cd ~
host:~$ git clone -b v6.1.33-phy3 https://github.com/phytec/linux-phytec-ti.git
host:~$ cd linux-phytec-ti

If you plan to use menuconfig to customize your kernel configuration, you’ll need the following additional Host dependencies:

host:~$ sudo apt-get install libncurses5-dev libncursesw5-dev

Make

The kernel build system leverages various environment variables and makefiles to build the kernel and it’s components for a specific target architecture. Reference the following commands when building for the phyCORE-AM64x:

	Configure the kernel build system to use PHYTEC’s provided kernel configuration for the default phyCORE-AM64x development kit

host:~$ make phytec_ti_defconfig phytec_ti_platform.config

	Make kernel configuration changes (enable/disable drivers)

host:~$ make menuconfig

	Save the kernel configuration from .config to a file named “defconfig”

host:~$ make savedefconfig

	Build everything (Image, DTB, kernel modules, etc):

host:~$ make

	Install kernel modules to the mounted bootable SD Card

host:~$ sudo make INSTALL_MOD_PATH=/media/user/root/ modules_install

The new Image kernel binary can be found at arch/arm64/boot/Image and the device tree blobs (and overlays) can be found at arch/arm64/boot/dts/ti/.

For installing the new kernel image and device tree files, head over to the SD Card guide.

 3rd Party Integration

3rd Party Integration

This section of the product wiki contains guides for integration of tools which are not part of our default BSP and might be added later.

	AWS IoT Greengrass V2 Quickstart

	Package Management

 AWS IoT Greengrass V2 Quickstart

AWS IoT Greengrass V2 Quickstart

Revision History

	Document Version

	Date

	Description of change

	v1.0

	10/27/2022

	Initial version of AWS IoT Greengrass guide targeting the phyCORE-AM64x SOM running BSP-Yocto-TISDK-AM64x-ALPHA2 based Linux.

	v1.1

	1/19/2023

	Minor style, grammar, and clarity edits.

	v2.0

	4/17/2023

	Updated the AWS IoT Greengrass guide targeting the phyCORE-AM64x SOM running BSP-Yocto-AM64x-PD23.1.0 based Linux.

	v3.0

	10/04/2023

	Updated the AWS IoT Greengrass guide targeting the phyCORE-AM64x SOM running BSP-Yocto-Ampliphy-AM64x-PD23.2.0 based Linux.

The phyCORE®-AM64x System on Module is a robust and reliable embedded solution designed for headless industrial communication systems. The 50mm x 37mm SOM has an extensive 280-pin interconnect supporting common factory communication protocols such as CAN, EtherCAT, UART, I2C and also automation specific interfaces such as EPWM, ECAP, and EQEP. Due to the heterogeneous architecture of the TI AM64x processor, you can run the majority of your application using Linux and offload critical components to the specialized low latency real-time cores. AWS IoT Greengrass is an excellent solution for your phyCORE-AM64x SOM to connect those critical, real-time processes to the cloud.

This guide will help you get started with integrating AWS IoT Greengrass V2 onto your phyCORE-AM64x Development kit running software based on the BSP-Yocto-Ampliphy-AM64x-PD23.2.0 Linux release.

Note

BSP-Yocto-Ampliphy-AM64x-PD23.2.0 doesn’t have AWS IoT Greengrass V2 support integrated by default but this will be available in a future release as a pre-built image. For now, this guide will help you to manually install the necessary dependencies by modifying the base BSP-Yocto-Ampliphy-AM64x-PD23.2.0 Linux release using Yocto.

To learn more about AWS IoT Greengrass, see How It Works [https://docs.aws.amazon.com/greengrass/v2/developerguide/how-it-works.html] and What’s New [https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-v2-whats-new.html].

Requirements

In order to follow this guide, you will need:

	The phyCORE-AM64x development kit [https://www.phytec.com/product/phycore-am64x/]. This includes:

	phyCORE-AM64x System on Module, PL1565 (PCM-072)

	phyBOARD-AM64x (Electra) Carrier Board, PL1566 (PBA-C-25)

	Micro USB cable

	Ethernet cable

	Two 2x5 .1” header to DB9 cables

	Pre-flashed Bootable SD Card (BSP-Yocto-Ampliphy-AM64x-PD23.2.0)

	12V/2A Power Supply Barrel Adapter

	USB-MicroSD Card Reader

	An AWS account [https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html#aws-registration]. More information can be found in the steps below.

The only thing not included in the development kit is the recommended Host Machine and development environment (see the steps below).

Steps

The first step will be to configure a Ubuntu 20.04 Host environment and build the base BSP-Yocto-Ampliphy-AM64x-PD23.2.1 software release according to the steps outlined in Build the BSP. In this guide, we will be modifying the default Yocto-based Linux Board Support Package (BSP).

Head over to the Build the BSP guide and follow the instructions outlined there carefully.

With the default BSP built we can now start fulfilling the Greengrass V2 dependencies using Yocto.

Java Dependency

Navigate into the BSP’s sources/ directory and clone meta-java. This is a community-maintained Yocto meta-layer that can provide openjdk-8 support.

Host (Linux)

cd $BUILDDIR/../sources
git clone https://git.yoctoproject.org/meta-java -b kirkstone

Enable meta-java as a active layer in our build configuration:

Host (Linux)

cd $BUILDDIR
bitbake-layers add-layer ../sources/meta-java

Installing the Dependencies

With our BSP properly configured for building openjdk-8, we can now specify it and other dependencies already available in the build tree to be included in the phytec-headless-image (these won’t be included by default).

Add the following line to the end of conf/local.conf:

conf/local.conf

IMAGE_INSTALL:append = " nodejs ntpdate openjdk-8 sudo"

Note

If you encounter strange linker errors when compiling the nodejs package, this is likely due to constrained compute resources (this package seems to require a lot of RAM, specifically). If you have more RAM you can allocate to your Host than do so, otherwise use the following steps to create a Swap file (depending on your Host setup, you may need to incrementally increase its size until you can build the package):

host:~$ sudo dd if=/dev/zero of=/swapfile.img bs=1024 count=8M #8GB Swap file + 16GB of RAM was tested successfully on PHYTEC's build machine
host:~$ sudo chmod 600 /swapfile.img
host:~$ sudo mkswap /swapfile.img
host:~$ sudo swapon /swapfile.img

The following command can be used to check the swap space available to the Host:

host:~$ cat /proc/swaps

Now you can re-build phytec-headless-image and the build system will automatically build and include those additional packages.

host:~$ bitbake phytec-headless-image

Booting the Resulting Image

Checkout the SD Card guide to help you flash the resulting phytec-headless-image to an SD Card and then use it to boot your development kit.

A good, quick reference on booting your phyCORE-AM64x Development Kit into Linux from an SD Card can be found in the Quickstart.

Setting Up the Hardware

Once you have booted your phyCORE-AM64x Development Kit into Linux and logged in as root, there are a few more things we need to configure at runtime before we can run the AWS IoT Greengrass installer.

First, your phyCORE-AM64x Development Kit must have a valid network connection. Checkout the Ethernet guide to help you with this.

When connected to a valid network, the Network Time Protocol (NTP) support we added to the image will also include a NTP systemd service that will automatically synchronize your system’s date and time with the internet. The system time must be correct in order to successfully complete the Greengrass Setup Steps.

We can quickly double check the system time with the following command (note that the time is shown in UTC time):

phyboard-electra-am64xx-2:~# date

The final step, before we dive into installing Greengrass V2, is to configure a default system user that Greengrass components can run under:

phyboard-electra-am64xx-2:~# useradd --system --create-home ggc_user
phyboard-electra-am64xx-2:~# usermod -aG root ggc_user

Now give the new ggc_user all root permissions and make sure no password is required:

phyboard-electra-am64xx-2:~# sudo visudo

Add the following line to the file to do this:

/etc/sudoers

ggc_user ALL=(ALL) NOPASSWD: ALL

Note

It is not advised to edit the /etc/sudoers file directly. In order to edit this, it is recommended to use the command sudo visudo.

Use passwd to explicitly delete the new user’s password:

phyboard-electra-am64xx-2:~# passwd -d ggc_user

AWS Account

Note

This section is intended as a simple quickstart into AWS IoT Greengrass and its integration into PHYTEC’s phyCORE-AM64x Development Kit and any potential production systems that employ the phyCORE-AM64x SOM. This guide is not intended to be an exhaustive source of documentation on AWS IoT Greengrass or other services.

This guide for the phyCORE-AM64x was largely adapted from https://docs.aws.amazon.com/greengrass/v2/developerguide/install-greengrass-core-v2.html

Please reference this official documentation from AWS for more information about AWS IoT Greengrass and other AWS services.

Before we can begin work with AWS IoT Greengrass you will need a AWS account [https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html#aws-registration].

Once you have an AWS account, you have your options for creating and managing IAM Users and Roles. The AWS CLI tool and AWS IAM console (accessed via your web browser) are both quickly available to do this but this guide will primarily utilize the web browser console when possible, which can be accessed here (we at PHYTEC think this is easiest): https://console.aws.amazon.com/iam/

Note

AWS IAM gives you the ability to create and manage security identities that can allow certain users and devices to access certain AWS services and resources. This guide will utilize long term security credentials which can be generated for IAM Users, but temporary credentials via IAM roles are also possible.

Follow the Create IAM Users (console) [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console] instructions to create a IAM User. You will need to save the Access Keys generated for the User for use in the following steps.

Warning

The Access Keys can only be viewed and downloaded at the time of creation. It is recommended to download these as a .csv file to your local filesystem (and keep them secret!).

With your Access Keys handy, run the following in your phyCORE-AM64x serial console (you need to run these commands with your specific keys!):

phyboard-electra-am64xx-2:~# export AWS_ACCESS_KEY_ID=<REPLACE-WITH-YOUR-ACCESS-KEY>
phyboard-electra-am64xx-2:~# export AWS_SECRET_ACCESS_KEY=<REPLACE-WITH-SECRET-YOUR-ACCESS-KEY>

Now we are ready to download the Greengrass installer:

AWS IoT Greengrass V2 Installer

Note

By downloading this software, you agree to the Greengrass Core Software License Agreement [https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf]

Tip

The server hosting the installer won’t let you download the installer unless you have a accurate system time. See the step above for enabling NTP if you have trouble downloading.

phyboard-electra-am64xx-2:~# cd ~
phyboard-electra-am64xx-2:~# mkdir ~/GreengrassInstaller
phyboard-electra-am64xx-2:~# wget https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip
phyboard-electra-am64xx-2:~# unzip greengrass-nucleus-latest.zip -d ~/GreengrassInstaller && rm greengrass-nucleus-latest.zip

We can verify the version of the AWS IoT Greengrass Core software with the following:

phyboard-electra-am64xx-2:~# java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

This is the time to decide your system’s device identifier and group. Run the installer with the following command, but replace “<thing-name>” and “<thing-group>” with strings specific to your application. For example, if you are a home appliance manufacturer and you are working on a new line of smart Fridges, you might use “fridgeThing1” for the Thing name, and “fridgeGroup” for the Thing group. This way you could potentially identify and troubleshoot specific Fridges, while also being able to roll out software updates to the entire fleet via the group.

Note

Note that AWS Greengrass devices are also referred to as “Things”, from the phrase “Internet-of-Things”, or as “core devices”.

In addition, the geographic region in which your device will operate will also need to be defined here. Amazon hosts AWS resources in multiple, isolated locations globally to keep those resources (compute and storage) as close to end users and devices as possible. Run the installer with the following command, but also replace the “<aws-region>” with the closest applicable region code.

Note

For more information on AWS regions, see: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

If you are located in Seattle, WA USA then “us-west-2” is a good option, for example.

phyboard-electra-am64xx-2:~# sudo -E java -Droot="/greengrass/v2" -Dlog.storeILE -jar ./GreengrassInstaller/lib/Greengrass.jar --aws-region <aws-region> --thing-name <thing-name> --thing-group-name <thing-group> --component-default-user ggc_user --provision true --setup-system-service true --deploy-dev-tools true

Note

There are a lot of optional installer arguments, some of which are used here. The main one to point out is the use of the --deploy-dev-tools argument which has the installer automatically download and install the Greengrass CLI component to the core device. With this you can develop and test custom components directly on the phyCORE-AM64x.

Upon successful completion of the above command, you should have Greengrass Core running on your phyCORE-AM64x Development Kit. We can confirm this in a couple ways:

We should see a “greengrass” systemd service running. This service will now be enabled to start on every boot.

phyboard-electra-am64xx-2:~# systemctl status greengrass

If we pull up the AWS IoT console [https://console.aws.amazon.com/iot/home] and navigate to All Devices -> Things, we should see the newly created device listed. Just be sure to select the correct region in the upper right corner of the console. This must be the same region that you used to setup the Thing, otherwise you will not see your device.

Greengrass components are software modules that run on Greengrass core devices. Components can represent applications, runtime installers, libraries, or any other code that you run on a device. For information on this process, see: https://docs.aws.amazon.com/greengrass/v2/developerguide/develop-greengrass-components.html

Create a Hello World Component

In the following steps, we will use the Greengrass CLI tool directly on the phyCORE-AM64x to create and deploy a local Greengrass component. These steps have been largely adapted from https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html#create-first-component

	Create a folder for your local component, with subfolders for recipes and artifacts. Run the following commands on your Greengrass core device to create these folders and change to the component folder.

phyboard-electra-am64xx-2:~# mkdir -p ~/greengrassv2/{recipes,artifacts}
phyboard-electra-am64xx-2:~# cd ~/greengrassv2/

	Create a recipe file that defines your component’s metadata, parameters, dependencies, lifecycle, and platform capability. Include the component version in the recipe file name so that you can identify which recipe reflects which component version. We will use JSON format here but YAML is also an option:

phyboard-electra-am64xx-2:~# vi recipes/com.example.HelloWorld-1.0.0.json

Edit the file to reflect the following contents before saving and closing the file:

recipes/com.example.HelloWorld-1.0.0.json

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.HelloWorld",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "My first AWS IoT Greengrass component.",
 "ComponentPublisher": "PHYTEC",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "Message": "world"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "Run": "python3 -u {artifacts:path}/hello_world.py \"{configuration:/Message}\""
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "Run": "py -3 -u {artifacts:path}/hello_world.py \"{configuration:/Message}\""
 }
 }
]
}

This recipe’s ComponentConfiguration section defines a parameter, Message, that defaults to world. The Manifests section defines a manifest, which is a set of lifecycle instructions and artifacts for a platform. You can define multiple manifests to specify different install instructions for various platforms, for example. In the manifest, the Lifecycle section instructs the Greengrass core device to run the Hello World script with the Message parameter value as an argument.

	Run the following command to create a folder for the component artifacts.

Note

You must use the following format for the artifact folder path. Include the component name and version that you specify in the recipe.

Example artifact path

artifacts/<componentName>/<componentVersion>/

phyboard-electra-am64xx-2:~# mkdir -p artifacts/com.example.HelloWorld/1.0.0

	Create a Python script artifact file for your Hello World component.

phyboard-electra-am64xx-2:~# vi artifacts/com.example.HelloWorld/1.0.0/hello_world.py

Edit the file to reflect the following contents before saving and closing the file:

artifacts/com.example.HelloWorld/1.0.0/hello_world.py

import sys

message = "Hello, %s!" % sys.argv[1]

Print the message to stdout, which Greengrass saves in a log file.
print(message)

	Use the local AWS IoT Greengrass CLI to create the component on your Greengrass core device:

phyboard-electra-am64xx-2:~# sudo /greengrass/v2/bin/greengrass-cli deployment create --recipeDir ~/greengrassv2/recipes/ --artifactDir ~/greengrassv2/artifacts/ --merge "com.example.HelloWorld=1.0.0"

This command adds the component that uses the recipe in recipes and the Python script in artifacts. The --merge option adds or updates the component and version that you specify.

	The AWS IoT Greengrass Core software saves stdout from the component process to log files in the logs folder. Run the following command to verify that the Hello World component runs and prints messages:

phyboard-electra-am64xx-2:~# sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

You should see the following expected output somewhere in the log:

Expected Output

com.example.HelloWorld: stdout. Hello, world

	The following can be used to remove the deployment:

phyboard-electra-am64xx-2:~# sudo /greengrass/v2/bin/greengrass-cli deployment create --remove="com.example.HelloWorld"

Upload Your Local Deployment

When you finish developing a component on your core device, you can upload it to the AWS IoT Greengrass service in the AWS Cloud. For steps on this process, please reference the AWS documentation: https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html#upload-first-component

Debugging and Troubleshooting

If you have issues building the BSP: Be sure to follow the Build the BSP guide exactly. Common issues encountered during this process often originate from the use of the wrong Host environment, which is Ubuntu 20.04. Other Linux distributions can be made to work with workarounds but using the same Host environment PHYTEC used to verify the BSP and the steps outlined in this guide will ensure you have the easiest time building the Yocto BSP.

Trouble booting your development kit? Follow the steps outlined in the Quickstart to help you set your boot switches correctly to boot from an SD Card. The green LED on the SOM is configured to blink with a “heartbeat” pattern once Linux boots. If you see this LED blinking but are getting no activity on the serial console, double check that your terminal is configured for 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control. If you continue having trouble, a good sanity-check is to boot PHYTEC’s default pre-built software image (without any custom modifications). Checkout the Pre-Built Binaries page for links to these pre-built binaries and refer to the SD Card guide to re-flash your SD Card if necessary.

If you have trouble installing Greengrass Core: Problems can occur if your core device isn’t connected to the internet, has an incorrect system time, or if the default user the component runs under (ie “ggc_user”) doesn’t have the correct permissions. Be sure that you ran through the steps outlined in this guide exactly.

If you have trouble creating the Helloworld Component: Run the following command on your core device to view the AWS IoT Greengrass Core software log file:

phyboard-electra-am64xx-2:~# sudo tail -f /greengrass/v2/logs/greengrass.log

This file includes logs from the Greengrass core device’s deployment service. You can also find logs for all the active components in the deployment here in the /greengrass/v2/logs directory as well. If the files here don’t exist, the local deployment may not be complete yet. If the file doesn’t exist within 15 seconds, the deployment likely failed. This can occur if your recipe isn’t valid, for example. Check the available log files for hints on what went wrong.

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

 Package Management

Package Management

The Yocto build system enables its users to not only build custom operating systems for their custom hardware, it also allows for the convenient setup of debian-style package feeds. These package repositories allow package manager software such as apt-get or opkg, running on the phyCORE-AM64x Development Kit, to search for pre-compiled libraries and utilities on the internet and install them for quick use. These near instant upgrades and changes to a Linux distribution are great for rapid prototyping.

As an example of who this guide might benefit: This guide might be very useful for a development team where 1 individual is in charge of the low-level stuff (like the Yocto BSP or Linux Kernel) and the rest of the team depends on that individual to provision their software images with the appropriate support for higher-level application software. Setting up a package feed would allow the team to download pre-built packages over a local area network to add software support on-the-fly to their booted phyCORE-AM64x Development Kits, making it less necessary to flash and re-flash SD Cards all the time.

Note

This guide will help you setup a debian-style package feed, allowing you to maintain it yourself. PHYTEC does not currently maintain a package feed for its customers.

Package Feed Setup (Ubuntu Host Machine)

First, head over to the Build the BSP guide and build the default BSP-Yocto-Ampliphy-AM64x-PD23.2.1.

With the BSP built, use your Ubuntu Host Machine and navigate into the $BUILDDIR/deploy/ipk directory.

Host (Linux)

cd $BUILDDIR/deploy/ipk

We will need our Host Machine’s IP address in order to setup a HTTP server on it that will serve-up our built packages (which are deployed here in the current directory in .ipk format). Use the following command to get the IPv4 address of the Host Machine:

host:~$ ip addr

Example Output

host:~$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: ens160: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether 00:0c:28:c1:c8:a0 brd ff:ff:ff:ff:ff:ff
 altname enp3s0
 inet 172.21.3.77/24 brd 172.22.3.255 scope global dynamic noprefixroute ens160
 valid_lft 603024sec preferred_lft 603024sec
 inet6 fe81::14d7:9892:aef5:8cd5/64 scope link noprefixroute
 valid_lft forever preferred_lft forever

In the above example output it can be seen that this Ubuntu Host Machine has the IPv4 address of 172.21.3.77. Keep the address for your host machine handy, you will need it in the following steps.

Use the following command to implement an HTTP server in the current working directory, binding it to the same IPv4 address as your Host Machine (we’ll ope this up on a random 5678 port too):

Note

The ‘&’ at the end of the command allows this to run as a background process, which prevents it from completely hijacking the terminal session we are in.

host:~$ python3 -m http.server 5678 --bind <host ip address> &

Now our server is up and running, but it’s not a useful or functional package feed yet.

So far, every .ipk in $BUILDDIR/deploy/ipk is an artifact of the image you built earlier, so they should all be installed already and thus aren’t so useful. In order to make this HTTP server a useful AND functional package feed, we’ll want to deploy an additional package to it that isn’t available by default on the target AND deploy a package index so that the OPKG package manager running on the target knows what packages are available.

We’ll use the packagegroup-core-buildessential package for our example, since it’s not available in PHYTEC’s pre-built images by default. This package contains common development tools such as gcc and make so it’s very useful for native development directly on the target hardware. We can build this package easily with the following:

Host (Linux)

cd $BUILDDIR
bitbake packagegroup-core-buildessential

Once built, we can also easily deploy a package index by leveraging a recipe provided by Open Embedded (you’ll need to run this every time you deploy a new .ipk in order for the package index to get updated with the new .ipk):

host:~$ bitbake package-index

Connecting the phyCORE-AM64x to the Package Feed

With your phyCORE-AM64x Development kit booted into Linux (using the software we prepared in the steps above), open the following opkg configuration file:

phyboard-electra-am64xx-2:~# vi /etc/opkg/arch.conf

Note

opkg is a package manager included by default in Ampliphy Linux Distro from PHYTEC.

The arch.conf file is a configuration file used by the opkg package manager and can be used to set the location a package feed server. We need to manually set the location of the package feed we just created within it.

Modify /etc/opkg/arch.conf to reflect the following. Be sure to replace “<host ip address>” with your Host Machine’s IPv4 address (found in the previous steps):

/etc/opkg/arch.conf

arch all 1
arch any 6
arch noarch 11
arch aarch64 16
arch |default-machine-underscore| 21

src/gz all <host ip address>:5678/all
src/gz aarch64 <host ip address>:5678/aarch64
src/gz |default-machine-underscore| <host ip address>:5678/\ |default-machine-underscore|

You only need to do this once for a given SD Card. However, if you re-flash the SD Card’s root filesystem with a fresh BSP-Yocto-Ampliphy-AM64x-PD23.2.1 image you’ll have to repeat these setup steps again (unless you set this up in your own meta-layer).

Usage

In order to use the package feed, your development kit will first need to be connected to your Local Area Network (the same one your Host Machine is connected to). Checkout the Ethernet peripheral guide for more information.

With a valid network connection, you can use opkg to update a list of the packages available in the feed:

phyboard-electra-am64xx-2:~# opkg update

We can output a list of available packages in the feed and search for specific ones (remember that we’ve only really added packagegroup-core-buildessential and its dependencies to the feed at this time. This example of searching the feed is mostly provided as a reference for after you have deployed additional packages to it):

phyboard-electra-am64xx-2:~# opkg list
phyboard-electra-am64xx-2:~# opkg list | grep packagegroup-core-buildessential

And we can install anything that is available with the following command:

phyboard-electra-am64xx-2:~# opkg install packagegroup-core-buildessential

Note

Depending on the size of the package you are installing, you may need to expand the root filesystem partition. The default phytec-headless-image has a root filesystem with only about 144MiB of extra capacity.

If you followed this guide exactly, then you can now install packagegroup-core-buildessential like so (just make sure you ran opkg update first!):

phyboard-electra-am64xx-2:~# opkg install packagegroup-core-buildessential

Similarly, you could remove specific packages with the following:

phyboard-electra-am64xx-2:~# opkg remove <package name>

Conclusion

If you work through the process outlined in this guide and the process outlined in the Hello World guide, it should become readily apparent how much time you can save by leveraging package management, when compared to the alternative.

Previously, in the Hello World guide, in order to add additional software to our bootable image we had to:

	Build the desired package as a part of our overall disk image.

	Update the entire boot media of our phyCORE-AM64x to gain access to the new support.

Now we can just build the packages by themselves and whoever needs them can grab them at runtime using the network, while at the same time preserve the root filesystem and whatever work it contained, which can greatly accelerate development.

 Pre-Built Binaries

Pre-Built Binaries

Note

The pre-built binaries available for download on this page reflect the default phyCORE-AM64x Development Kit configuration: KPB-07225-002.A0

For a complete view of all available pre-built images please visit PHYTEC’s download server:

BSP-Yocto-Ampliphy-AM64x-PD23.2.1 [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/]

For an overview of all SOM/Development Kit configurations supported in this Release, checkout the BSP-Yocto-Ampliphy-AM64x-PD23.2.1.

Download Link for the Complete, Prebuilt SD Card Image

Download the SD Card Image - phytec-headless-image-phyboard-electra-am64xx-2.wic.xz [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/phytec-headless-image-phyboard-electra-am64xx-2.wic.xz]

You’ll need the .wic.bmap [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/phytec-headless-image-phyboard-electra-am64xx-2.wic.bmap] file to flash SD Cards using the bmaptool utility.

Note

The files below are already contained within the SD Card Image. When the SD Card image is flashed to a disk; the first partition is a boot partition containing the U-Boot Bootloader and Linux kernel binaries, and the second is the root partition containing everything else.

Download Links for Individual Pre-Built Image Components

Download the First Stage Bootloader - tiboot3.bin [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/tiboot3.bin]

Download the Second Stage Bootloader - tispl.bin [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/tispl.bin]

Download the Primary Bootloader - u-boot.img [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/u-boot.img]

Download the Root Filesystem - phytec-headless-image-phyboard-electra-am64xx-2.tar.xz [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/phytec-headless-image-phyboard-electra-am64xx-2.tar.xz]

Note

The kernel (Image), device tree blob (dtb), and device tree overlays below are included in the Root Filesystem (/boot directory of the root partition) by default.

Download the Linux Kernel Image - Image [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/Image]

Download the Default Linux Device Tree - k3-am642-phyboard-electra-rdk.dtb [https://download.phytec.de/Software/Linux/BSP-Yocto-AM64x/BSP-Yocto-Ampliphy-AM64x-PD23.2.1/images/ampliphy/phyboard-electra-am64xx-2/k3-am642-phyboard-electra-rdk.dtb]

For any technical questions, feel free to reach out to PHYTEC’s Support Portal [http://support.phytec.com/]!

 Index

Index

_images/ethernet-dhcp-diagram.png
Host Machine

DHCP
Server

ASwitch

phyCORE RDK
Ethernet

_images/menuconfig.jpg
.config - Linux/armé64 5.10.65 Kernel Configuration

— Linux/arm64 5.10.65 Kernel Configuration —

General setup --->

[*] Support DMA zone
[*] Support DMA32 zone
Platform selection --->
Kernel Features --->
Boot options --->
Power management options --->
CPU Power Management --->
Firmware Drivers --->
[1 ACPI (Advanced Configuration and Power Interface) Support ----
[*] virtualization --->
-*- ARM64 Accelerated Cryptographic Algorithms --->
General architecture-dependent options --->
[*] Enable loadable module support --->
[*] Enable the block layer --->
I0 Schedulers --->
Executable file formats --->
Memory Management options --->
[*] Networking support --->
Device Drivers --->
File systems --->
Security options --->
-*. Cryptographic API --->
Library routines --->
Kernel hacking --->

g3 lHe LpgriSymInfogkiHelp 2@ ShowAllg&iBackgd Savegdil oadgdisymSearchgd lExit]

_images/am64-blink-circuit.png
x27

Pins o S

Pina =

_images/connection-diagram_can.png
Host Machine

Development kit
CcAN

PCAN-USB
cable

(o

_images/pb-07225_CCSsetuptype_jtag.png
& sewp - X
seup e Sp

Choose the installation type that you prefer

(@ Custom Installation (Recommended)

This selection allows for selecting which device families and debug probes will be supported. A custom installation can reduce the amount of
disk space used and improve performance. Itis possible to modify selections in the future by running the installer again.

O Full Installation

This selection installs support for all device families and debug probes. Approximately 4GB of disk space is required. Note that not all device
families and debug probes are supported on Linux and macOS.

_images/pb-07225_UARTCOMjpg.jpg
& Device Manager

File Action View Help

e B EHED B EX®

& DESKTOP-TTONTSR
> & Audio inputs and outputs
> B Batteries
18 Biometric devices
> © Bluetooth
> @ Cameras
> B3 Computer
Disk drves
> [Display adapters
> B Firmware
> @ Human Interface Devices
& Jungo Connectivity
> 2 Keyboards
> L3 Memory technology devices
> © Mice and other pointing devices
=1 Monitors
> @ Network adapters
v @ Ports (COM&LPT)

§ Siicon Labs Dusl CP2105 USE to UART Bridge:Enhanced COM Port (COM74)
@ Siicon Labs Dusl CP2105 USB to UART Bidge: Standsrd COM Port (COMT3)

) USB Serial Port (COMTS)
> 0 Print queues
> =0 Printers
I Processors
> Wy Security devices

B Software comnnnente

_images/pb-07124_UARTCOM.jpg
& Device Manager
Fle Acion View Help

e mEn R

~ & DESKTOP-TTONTSR
> i Audio inputs and outputs
5 D Batteries
18] Biometric devices
> @ Bluetooth
> @ Cameras
> & CAN-Herdware
Computer
> Disk drives
> I Display adapters
> B Firmware
i@ Human Interface Devices
> & Jungo Connectivity
> 2 Keyboards
> T3 Memory technology devices
5 @ Mice and other pointing devices
> B Monitors
> & Network adapters
v @ Ports (COM&LPT)
) USE Serial Port (COM10)
& USE Serial Port (COMTS)
) USE Serial Port (COMS)
> 50 Print queues
> 5 Printers

+ [l Processors
< B0 Securine deicne

_images/pb-07225-bootswitch-closeup.png

_images/pb-07225_VMsetting.jpg
Virtual Machine Settings

Hardware Options

| Device Summary
| E=IMemory 16GB
{processors 4
[\ Hard Disk (SCS) 29068
@ CD/DVD (SATA) Auto detect
2 Network Adapter NAT
USB Controler Present.
< Sound Card Auto detect
S Printer Present
[Clpisplay Auto detect
Add..

Device status
Connected

Connect at power on

nection

O Bridge
Replcate physical network connection state

& Configure Adapters

(@ NAT: Used to share the host's IP address
O Host-only: A private network shared with the host
O custom: Spediic virtual network

VMneto
O LAN segment:

LAN Segments...

red directly to the physical network

_images/pb-07225_addsitarra_jtag.png
& Setup —

Selc Componens Sp

Select the components you want to install clear the components you do not want to install. Click Next when you are ready to continue.

[MSP430 ultra-low power MCUs. Click on a component to get a detailed description
[J SimpleLink™ MSP432™ low power + performance MCUs

[SimpleLink™ CC13xx and CC26xx Wireless MCUs

[SimpleLink™ Wi-Fi® CC32xx Wireless MCUs

[CC2538 IEEE 802.15.4 Wireless MCUs

[€200 real-time MCUs

[TMAC12¢ ARM® Cortex ®-MAF core-based MCUs

[Hercules™ Safety MCUs

[Sitara™ AM3x, AM4x, AMSx and AMéx MPUs.

[Sitara™ AM2x MCUs

[] OMAP-L1x DSP + ARM3® Processor

[Davinci (DM) Video Processors

[J OMAP Processors

[] TDAx Driver Assistance SoCs & Jacinto DRAx Infotainment SoCs
[C55x ultra-low-power DSP

[6000 Power-Optimized DSP

(] 66AK2x multicore DSP + ARM® Processors & C66x KeyStone™ multicore DSP.
[mmWave Sensors

[Cé4x multicore DSP

[J UCD Digital Power Controllers

[PGA Sensor Signal Conditioners

_images/pb-07225_boot-emmc.png

nav.xhtml

 Table of Contents

 		
 phyCORE-AM64x

 		
 Release Notes

 		
 BSP-Yocto-Ampliphy-AM64x-PD23.2.1

 		
 New in this Release

 		
 Software Versioning

 		
 Part Number Summary

 		
 Supported Builds

 		
 Linux Device Tree Summary

 		
 Supported Boot Sources

 		
 Supported Features

 		
 Interface Overview

 		
 BSP-Yocto-Ampliphy-AM64x-PD23.2.0

 		
 New in this Release

 		
 PHYTEC Meta Layer

 		
 Part Number Summary

 		
 Linux Device Tree Summary

 		
 Supported Interfaces

 		
 Quickstart

 		
 Basic Evaluation Requirements

 		
 Check the Board Configuration

 		
 SD Boot Settings

 		
 Serial Communication Setup

 		
 Windows 10 Instructions

 		
 Linux Instructions

 		
 Power the Board

 		
 Safe Shutdown

 		
 Interface Guides

 		
 CAN

 		
 Requirements

 		
 Setup the CAN Network

 		
 Setup CAN software

 		
 Send CAN Messages

 		
 Receive CAN Messages

 		
 EEPROM

 		
 Verifying EEPROM Initialization

 		
 Writing to the EEPROM

 		
 Reading from EEPROM

 		
 Reading/Writing to the SOM EEPROM

 		
 eMMC

 		
 Viewing eMMC Partition Information

 		
 Setup a Root Filesystem on the eMMC

 		
 Mounting the eMMC

 		
 Writing to eMMC

 		
 Reading from the eMMC

 		
 Ethernet

 		
 Requirements

 		
 Establishing a Connection

 		
 Finding the phyCORE-AM64x’s IPv4 address

 		
 Changing Static IPv4 Address to DHCP

 		
 SSH into the phyCORE-AM64x

 		
 Fan

 		
 Requirements

 		
 Connecting Your Fan

 		
 Enabling the Overlay

 		
 Toggling the Fan

 		
 GPIO

 		
 Requirements

 		
 Using LEDs and Push buttons

 		
 GPIO Signal Naming

 		
 Advanced GPIO Control

 		
 I2C

 		
 Requirements

 		
 Connecting Your I2C Device

 		
 Using I2C1

 		
 JTAG

 		
 Requirements

 		
 Development Kit Setup

 		
 Host Setup

 		
 miniPCIe

 		
 Requirements

 		
 Development Kit Setup

 		
 Confirming Mini PCIe Connection

 		
 OSPI Flash

 		
 View Available NOR Partitions

 		
 Write to OSPI

 		
 Read from OSPI

 		
 Power and Reset Buttons

 		
 Power LEDs

 		
 RTC

 		
 RTC Naming

 		
 Setting the System Time

 		
 Setting the RTC

 		
 Reading the RTC

 		
 SD Card

 		
 Requirements

 		
 Transfering Media on Target

 		
 Transfering Media from Host

 		
 SPI

 		
 Requirements

 		
 Development Kit Setup

 		
 Enabling Overlay & Script

 		
 Loop-back Test

 		
 Thermal Zone

 		
 Reading the Temperature

 		
 Temperature Trip Point

 		
 TPM

 		
 Confirming TPM Function

 		
 UART

 		
 Requirements

 		
 UART1 Hardware Setup

 		
 UART1 Terminal Setup

 		
 UART1 Setting the Baud Rate

 		
 Sending a Message to UART1

 		
 Receiving a Message from UART1

 		
 UART3 Hardware Setup

 		
 UART3 Terminal Setup

 		
 UART3 Setting the Baud Rate

 		
 Sending a Message to UART3

 		
 Receiving a Message from UART3

 		
 USB

 		
 Requirements

 		
 Development Kit Setup

 		
 Verifying USB Interface

 		
 Mounting USB Stroage Devices

 		
 Write to the USB Host Device

 		
 Read from the USB Host Device

 		
 Unmounting the Drive

 		
 Booting Essentials

 		
 SD Card

 		
 Create a Bootable SD Card

 		
 Updating Individual Parts of the SD Card (Advanced, Linux Machine)

 		
 Booting from SD Card

 		
 eMMC

 		
 Booting from eMMC

 		
 OSPI

 		
 Boot from OSPI

 		
 UART

 		
 Preparing the Development Kit

 		
 Loading the Bootloader Binaries

 		
 Copying Files to the Device

 		
 Using a Network

 		
 Using Removable Storage Devices

 		
 Configuring the Bootloader

 		
 Change the Device Tree

 		
 Working with Overlays

 		
 Reset the U-Boot Environment to Default Settings

 		
 Boot Modes

 		
 Installing the OS

 		
 Flashing the eMMC

 		
 Flash eMMC from SD Card

 		
 Flash eMMC from Network

 		
 Flash eMMC from USB

 		
 RAUC

 		
 Flashing the SPI NOR Flash

 		
 Flash SPI NOR Flash from SD Card

 		
 Flash SPI NOR Flash from Network

 		
 Application Development

 		
 Linux Application Development

 		
 Install The Yocto SDK

 		
 Hello World

 		
 Blink

 		
 Podman

 		
 MCU+ SDK Application Development

 		
 MCU+ SDK Host Setup

 		
 Building an Application

 		
 Running the Firmware

 		
 Building the BSP

 		
 Build the BSP

 		
 Requirements

 		
 Host Setup

 		
 Yocto Build Steps

 		
 Start the Build

 		
 Components of a Built BSP

 		
 Building the SDK Installer

 		
 Modify The BSP

 		
 Adding Packages to the BSP

 		
 Modify the Kernel Config

 		
 Modify the BSP’s Kernel Source Directly

 		
 Modifying the BSP Sources With ‘devtool’

 		
 Create a Custom Meta-Layer

 		
 bitbake-layers Tool

 		
 Check Existing Layers

 		
 Create a Layer

 		
 Add Layers

 		
 Extend a Recipe

 		
 Standalone Kernel Development

 		
 Requirements

 		
 Clone the Linux kernel

 		
 Make

 		
 3rd Party Integration

 		
 AWS IoT Greengrass V2 Quickstart

 		
 Requirements

 		
 Steps

 		
 Booting the Resulting Image

 		
 Setting Up the Hardware

 		
 AWS Account

 		
 AWS IoT Greengrass V2 Installer

 		
 Create a Hello World Component

 		
 Upload Your Local Deployment

 		
 Debugging and Troubleshooting

 		
 Package Management

 		
 Package Feed Setup (Ubuntu Host Machine)

 		
 Connecting the phyCORE-AM64x to the Package Feed

 		
 Usage

 		
 Conclusion

 		
 Pre-Built Binaries

_images/pb-07225_boot-sd.png
ON

s4

_images/pb-07225_boot-uart.png
% 5 6

_images/pb-07225_boot-jtag.png
% 5 6 7 8

_images/pb-07225_boot-ospi.png

_images/pb-07225_debuggers_jtag.png
& Setup

Install debug probes

Select the debug probes you want installed.

Spectrum Digital Debug Probes and Boards
[Blackhawk Debug Probes
[J SEGGER J-Link

_images/pb-07225_ethernet.png

_images/pb-07225_can-receive.png
File CAN Edit Transmit View Trace Window Help

PP Roe (02 % 5O

B Receive/ Transmit
O can-p
000h

ID: (he) Length: Data: (hex)
000 B <

Cycle Time:

OPaused

Tigger Comment
s Manual

Transmit

@ Connected to hardware PC) | Bitrate: 1 MBit/s | Status:

ermuns: 0 | QXmiFulk

_images/pb-07225_can.png

_images/pb-07225_fan.png

_images/pb-07225_fan_pin1.png

_images/pb-07225_gpio0_18.png
Table 6-1. Pin Attributes (ALV Package) (continued)

A T
a1 wux st s w0 P
wisit | eaoconraRegaer 11 SioaL navE [wooe | TE ourng AreR overav | power i1 | M3 | BUTER | yomown
PADCoNFIG Addess {16 3 Reser Rever VOLTAGE) et
RxTPUL (1 | RXTXPULL (1
G o1 T [
Fe o0 [
o on Tz 0 T 1o
N [EHRPWMO_SYNCO 3] o
uz1 PADCONFIG: — on/of/of on/of/Of 18VA3V VDDSHV3. Yes | Lvemos | PuPD
Frbconricrs oo T o
faeey
EEXD e
PR Pz 00T s o
SoomioDesT i
G foz T [
Fe o or T
Do) T o
onco so2
ST N
T8 PADCONFIG: r— on/of/of on/of/Of 18VA3V VDDSHV3. Yes | Lvemos | PuPD
Frbconricr T oA T o
fsedh
EExg T e
PG P T O
SoomioDes:]
e
ey T
AT 00 T
onco 403
P A T
u20 PADCONFIG: — on/of/of on/of/Of 18VA3V VDDSHV3. Yes | Lvemos | PuPD.
Frbconricrs e oA o
faeey
ExD T o
Prca A T
oo o]
i for s 1w
P00 T
T 0 T o
onco sou
P 6 E)
uis | PADCONFIG: — on/of/of on/of/Of 18VA3V VDDSHV3. Yes | Lvemos | PuPD
Frbconricrs T oz o
fesere
B T o
Prca P B v o
SoomioDeot] 1

_images/pb-07225_gpio_s7-s8.png

_images/pb-07225_gpio_x27_pin4_pin8.png

_images/pb-07225_gpio_calculator.png
Calculator = o X

= Programmer

25 4007

| HEX 25 4007
DEC 2441223
ocT 11240007
BIN 001001010100 0000 0000 0111

QWORD Ms
0000 0000 0000 0OOOO
60 56 52 48

0000 0000 0000 OOOO

a4 40 36 32

0000 0000 0010 0101

28 24 20 16

0100 0000 0000 0111

2 8 4 0

_images/pb-07225_gpio_led1-d30.png

_images/pb-07225_jtag.png

_images/pb-07225_jtag_reflashing-verification.jpg
Device Manager

File Action View Help

e mEn B

& DESKTOP-TTONTSR
> & Audio inputs and outputs
5 B Batteries
> 8] Biometric devices
> © Bluetooth
> @ Cameras
> B3 Computer
> Diskdrives
> [Display adapters
> B Firmware
> @ Human Interface Devices
> & Jungo Connectivity
> = Keyboards
> T3 Memory technology devices
> (9 Mice and other pointing devices
> I Monitors
> @ Network adapters
v @ Ports (COM&LPT)
§ Siicon Labs Dual CP2105 USE to UART Bridge: Enhanced COM Port (COMT)
@ Siicon Labs Dual CP2105 USB to UART Bridge: Standard COM Port (COMS)
USB Serial Port (COM30)

> 3 Print queues

+ [l Processors
{80 Securive deicee

_images/pb-07225_i2c_pin_location.png

_images/pb-07225_jtag-xds110.png

_images/pb-07225_newtargetconfig_jtag.png
& New Target Configuration o X
Target Configuration
Create a new Target Configuration file.
File name: ‘ AM64x_XDS110_USB.coxml
Location: \ C:/Users/w-tloan/ti/CCSTargetConfigurations File System... | Workspace.
® =

_images/pb-07225_newworkspace_jtag.png
&P Code Composer Studio Launcher

Select a directory as workspace

Code Composer Studio uses the workspace directory to store its preferences and development artifacts.

Workspace: || CAUsers\wi-tloan\workspace v11 Browse...

[Use this as the default and do not ask again

e

_images/pb-07225_micro-sd.png

_images/pb-07225_power-reset-btns.png

_images/pb-07225_quickstart-devicemanager.png
A Device Manager

File Action View Help

e mHEm B

wi-tloan

> ¥ Audio inputs and outputs

> 3 Batteries

> 8] Biometric devices

> @ Bluetooth

® Cameras

> B Computer

= Disk drives

[Display adapters

B Firmware

& Human Interface Devices

“B IDE ATA/ATAPI controllers

= Keyboards

L1 Memory technology devices

@ Mice and other pointing devices

Monitors

P Network adapters

B Portable Devices

v & Ports (COM & LPT)
@ IntelR) Active Management Technology - SOL (COM3)
@ Silicon Labs Dual CP2105 USB to UART Bridge: Enhanced COM Port (COMS)
@ Silicon Labs Dual CP2105 USB to UART Bridge: Standard COM Port (COM9)

3 Print queues

L Processors

B9 Security devices

B Gafhuare camnanente

_images/pb-07225_pcie.png

_images/pb-07225_power-leds.png

_images/pb-07225_quickstart-terminal-settings.jpg
Tera Term: Serial port setup

Port: COM4 ¥ oK
|115200 v

Speed:

Data: 8 bit v Cancel
Parity: none v

Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecichar 0 mseciline

_images/pb-07225_quickstart-serialconfig.jpg
¥ COM4 - Tera Term VT

File Edit | Setup Control Windoy
Terminal...
Window..
Font..
Keyboard...

Serial port...

Pre
H.

SSH Authentication.
SSH Forwarding...
SSH KeyGenerator.
TCR/IP...

General.
Additional settings..

etup.

Restore setup..

Load key map...

_images/pb-07225_quickstart-terminal-session.jpg
VT
File Edit Setup Control Windo
New connection.. Alt+N

in connectiol

Replay Log.

TTY Replay

Print.

Exit

Exit All

_images/pb-07225_setuptargetconfig_jtag.png
@ Getting Started *AM64x XDS$110_USB.coxml 53
Basic

General Setup
This section describes the general configuration about the target.

Connection | Texas Instruments XDS110 USB Debug Probe

Board or Device | type filter text

AM64x
[AM64x_GP_EVM
[AM64x_SK EVM
[Am6526

[AM6526 RevA
O Ames27

[AM6527_RevA
[Ames28

[AM6528 RevA
[Am6546

] AM6546 RevA

AM64x

Note: Support for more devices may be available from the update manager.

Advanced Setup

Target Configuration: lists the configuration options for the target.

Save Configuration

Save

Test Connection
To test a connection, all changes must have been saved, the
configuration file contains no errors and the connection type supports this function.

Test Connection

Alternate Communication

Uart Communication v

To enable host side (i PC) configuration necessary to facilitate data
communication over UART, target application needs to include a monitor
implementation. Please check example project in Ti Resource Explorer. If your
target application leverages TI-RTOS, then please check documentation on how to
enable Uart Monitor module.

To add a port in the target application for Uart Monitor, click the Add button.

To remove a port in the target application for Uart Monitor, select the port to be
removed and click the Remove button.

Add

Delete

Basic| Advanced | Source |

_images/pb-07225_spi.png

_images/pb-07225_quickstart_bootup.png

_images/pb-07225_s3-s4-bootswitches.png

_images/pb-07225_uart-callout-backside.png
UARTS (X31)

_images/pb-07225_uart-callout.png

_images/pb-07225_successfull-test_jtag.jpg
@ Getting Started |) AMB XDST10_USB.coxml X

Target Configuration

Al Connections

v & Texas Instruments XDS110 USB Debug Probe_0
+© AMES0
VR CS0APD
v ComputeCluster A53.0
i CortexA53 0
X ComputeCluster A531
CortexAs31
X MAIN PULSAR 0.0
 MAIN_Cortex R5 00
X MAIN PULSAR 0.1
MAIN_Cortex R5_0_1
X MAIN PULSAR 1.0
® MAIN_Cortex R5_1.0
X MAIN PULSAR 11
MAIN_Cortex R5_1_1
% DMsC
DMSC_Cortex M3.0
v 15560
i 1CSS_GO_PRU_O
i 1CSS_GO_RTU_PRU_O
1 1CSS_GO_TX_PRU_O
1 1CSS_GO_PRU_1
i 1CSS_GO_RTU_PRU_1
1CSS_GO_TX_PRU_T
v R ICss 61
1 1CSS_G1PRUO
i 1CSS_G1_RTU_PRU_O
i 1CSS_G1_TX_PRUO
1 1CSS_G1PRU_T
{# 1CSS_G1_RTU_PRU_1
8 1CSS_G1TX_PRU_T
X BLAZAR CMAF
i BLAZAR Cortex_M4F 0
v Trace
i CssTMLO
® CTSET2.0
[DebugCell_TBR.O

Import.

=&

ShH=]
Cpu Properties
PRU Accelerator
Set the properties of the selected cpu.

Dleypass
[Secondary Processor

initilization script Browse.

8 Trget Configurat

type filtertext

& Projects
> i User Defined

The ITAG IR Integrity scan-test has succeeded.

[Perform the Integrity scan-test on the JTAG DR]

This test will use blocks of 64 32-bit words.
This test will be applied just once.

Do a test using OxFFFFFFFF.
Scan tests: 1, skipped: 6, failed: @

Do a test using Ex20000000.

Scan tests: 2, skipped: 6, failed: @

Do a test using OXFEG3EGE2.

Scan tests: 3, skipped: 6, failed: 6

Do a test using @xIFCIFID.

Scan tests: 4, skipped: 6, failed: @

Do a test using OxS533CCAA.

Scan tests: 5, skipped: 6, failed: @

Do a test using GXAACC33SS.

Scan tests: 6, skipped: 6, failed: 6

ALL of the values were scanned correctly.

The JTAG DR Integrity scan-test has succeeded.

[End: Texas Instruments XDS110 USB Debug Probe_]

_images/pb-07225_trm_gpio_padconfig.png
511432 PADMMR_PADCONFIGHS Register (Offset = 4048h) [reset = 254007h]
PADMAR_PADCONFIGS i shown n Figure £33 and descrbed in T 5.7.
Retum o Summry Table

‘Register o contol in confgurstion and g

576, PADMMR_PADCONFIGS Instances

oo [man

Table 577. PADMNR_PADCONFIGHE Field Descrptions
S [raa Tope st

|- e regers mctes

- Porn g 8ok o v wrss.

g
7
i
i
!
i
i
!
i

[[eemerrreras

PR I R

PO R R T
[P saan s
|-t oo ases

NTRoENTS.
‘e conprzn s

Table 577, PADMR_PADCONFIGHE Field Desoriptions (continued)

B [[rewrsom o oo
Jon- s g s s
-

I e I R T T

|
I
;
!

B P [

_images/pb-07225_uart-x27-pinout.png
TTL Cable

_images/pb-07225_uart1.png
UART1 (X4)

Pin1

_images/MCUPlus_importwindow.png
Import CCS Projects x

Import CCS Projects

Import existing CCS Projects or example CCS Projects.

(o) Select search-directory: | yboard-electra-am64xx/m4fss0-0_nortos| Browse.

Select archive file: Browse

Discovered projects:

Select All
Deselect All

Refresh

 Automatically import refe
+ Copy projects into workspace

ed projects found in same search-director

Open Resource Explorer to browse a wide selection of example projects.

(] cancel Finish

_images/MCUPlus_overview.png
Git

Get the MCU+ SDK
from Github

PHYTEC MCU+

SDK source

Import the source
code into CCS

Option 2: Copy your

Buid a binary binary 1o an existing

ccs withcCs . Linux image
Binary

and other tools

Option 1: Include the.
binary in Yocto and
buid it into your
image

Linux + MCU

Yocto)
Buid vith firmware

Yocto

_images/MCUPlus_build.png
File Edit View Navigate Project Run Scripts Window Help

Project Explorer X

> @ Generated Source
> @ includes
> @ Debug
> @ targetConfigs
> B gpio_led_blink.c
> B main.c
example.syscfg
R makefile_ccs_bootimage_gen
@ README.html
I syscfg_crovxs

New

ShowIn Shift+Alsw >
Show in Local Terminal >

Add -
18 copy ctrl+c
i Paste ctrlsv

% Delete

Refactor >
Source >
Move...

Rename...

Import
4 Export...

‘Show Build Settings...

Build Project N

Cleal

. Buld the currently selected project(s)
@ Refresh F5
Close Project

Build Targets
Index
Build C

“* DebugAs
Restore from Local History...

Team >
Compare With >
Properties Alt+Enter

; [gpio_led_blink_phyboar

_images/MCUPlus_import.png
File Edit View Navigate Run Scripts Window Help
Open Project
Close Project

R Project Explorer X # New CCS Project...

There are no projects inyour - Project Wizard (Resource Explorer)
Toadda project: Build Configurations >
W Createanew C/C++/ASM Build Working Set > efile.
W Createa project... Clean...
a1 Import projects... Build Automatically
‘Show Build Settings...
'™ Import CCS Projects... N
™ in
. Importexisting CCS Projects into workspace
Add |
RTSC Tools > ‘
Properties)|

_images/MCUPlus_projexplorer.png
workspace_v12_1- Code Composer S