

phyCORE-AM57x

When beginning to consider the phyCORE-AM57x System On Module (SOM) as a part of your system design, it can be a little difficult to know where to start. Here is a suggested workflow:

	First, work through the Quickstart guide to become familiar with your development kit and to boot it for the first time. From there, you can head over to the Interface Guides to help you evaluate the available hardware interfaces the development kit provides. Depending on your system requirements, this might be all you need to begin scripting and developing the basic functionality of your system.

	In most use-cases, PHYTEC’s development kit will not satisfy every design requirement, and thus a custom carrier board will usually need to be made that brings out all the SOM features you will uniquely require. For hardware documentation, checkout the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

	Schematics are controlled documents and these can be requested through PHYTEC’s Support Portal [http://support.phytec.com/], where you are also invited to ask your technical questions!

	The Booting Essentials section provides references for all development tasks related to booting the development kit. Check it out if you need to update your boot device with new software, or if you’d like to evaluate the various boot devices your development kit supports.

	If you are ready to begin writing custom software applications for your hardware, checkout the Application Development section. This will include guides for setting up your development environment and guides for writing some basic software examples.

	Eventually, you’ll start to identify limitations of the default Board Support Package (BSP) from PHYTEC; this could include missing drivers, missing userspace utilities, hardware interfaces not enabled by default, etc. The next step is to modify the BSP to satisfy those requirements. Head over to the Building the BSP section for guides relating to building the default BSP, as well as how to begin modifying it.

PHYTEC’s Linux BSPs are built using The Yocto Project [https://www.yoctoproject.org/]. Yocto is a powerful toolset that allows OEMs to create custom, production-ready Linux Distributions for custom hardware. PHYTEC’s BSP is configured by default to support the phyCORE-AM57x development kit, but by using the tools provided by the open-source build system, software support for custom hardware can be easily integrated in a modular fashion.

	Release Notes

	Quickstart

	Interface Guides

	Booting Essentials

	Application Development

	Building the BSP

	Pre-Built Binaries

	FAQ

Release Notes

This document highlights the key features and support included in the BSP-Yocto-AM57x-PD23.1.0 software release for the phyCORE-AM57x SOM and development kit.

Board Support Package Status

	BSP Operating system

	Linux

	Release Status

	RELEASED

	Release Date

	2023-12-15

	Repository

	PHYTEC Public Repos [https://github.com/phytec]

	Binaries

	BSP-Yocto-AM57x-PD23.1.0 [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-1/]

New in this Release

Yocto

	Switched from TI Arago to PHYTEC Yogurt Distro

Linux Kernel

	Added support for VM-016 phyCAM-P (parallel) Camera

	Replacement for VM-009 phyCAM-P (parallel) Camera (Deprecated)

Software Versioning

The BSP-Yocto-AM57x-PD23.1.0 software release is largely based off of Texas Instruments’s v08.06.00.007 Processor SDK Linux release and shares much of the same components and features.

Software Versioning

	Tested Build Environment

	Ubuntu 20.04

	Ubuntu 20.04 Release Downloads [https://releases.ubuntu.com/20.04/]

	Linux Kernel

	v5.10.168 (tag: v5.10.168-phy7)

	PHYTEC Linux kernel repository [https://github.com/phytec/linux-phytec-ti/tree/v5.10.168-phy7]

	U-Boot Bootloader

	v2021.01 (tag: v2021.01_08.06.00.007-phy6)

	PHYTEC U-Boot bootloader repository [https://github.com/phytec/u-boot-phytec-ti/tree/v2021.01_08.06.00.007-phy6]

	Yocto

	3.1.27 Dunfell (tag: BSP-Yocto-AM57x-PD23.1.0)

	PHYTEC Meta Layer repository [https://git.phytec.de/meta-phytec/tree/?h=BSP-Yocto-AM57x-PD23.1.0]

PHYTEC Meta Layer

This BSP release supports various configurations of the phyCORE-AM57x SOM and Development Kit, here is a summary of the Yocto MACHINE configuration support included in the PHYTEC Meta Layer for this release:

Yocto MACHINE Summary

	Yocto MACHINE

	Default Target Image

	Linux Distro

	Kit Part Number

	Compatible Modules

	U-Boot defconfig

	Linux defconfig

	Device Tree Files

	phycore-am57xx-1 (Default Kit)

	phytec-qt5demo-image

	PHYTEC Yogurt Reference Distribution

	KPCM-057-Lin

	PHYTEC phyCORE-AM57x Linux development kit (RAM auto-detection), eMMC, with display/graphics

	phycore_am57x_defconfig

	phytec_ti_defconfig phytec_ti_platform.config

 Quickstart

Quickstart

If you have just purchased a phyCORE-AM57x Development Kit, this Quickstart guide will help you boot your development kit into Linux and establish a serial console session with it.

[image: phyCORE-AM57x Development Kit]

Basic Evaluation Requirements

Host system requirements are minimal for basic serial communication, and for the purposes of this Quickstart any modern computer could be used (Windows or Linux Host Machines).

Tip

This Quickstart will leverage pre-built software images in order to boot and communicate with the phyCORE-AM57x Development Kit. In order to re-build or introduce changes to the phyCORE-AM57x‘s Linux Board Support Package (BSP) a Linux Host Machine is required. A common and viable approach to satisfying this requirement is to install a Linux Virtual Machine onto a Windows computer. Further information such as the recommended Linux Distribution, RAM allocation and free disk space can be found in the Build the BSP guide.

Check the Board Configuration

The phyCORE-AM57x Development Kit should have been pre-configured during PHYTEC’s manufacturing process, but we will double check it together as an exercise:

	Taking care to avoid Electrostatic Discharge (ESD), press firmly down on the edges of the SOM to ensure that it is fully seated onto the Development Kit carrier board’s mating connectors. If evaluating multiple SOM configurations, this will be an important step to perform when swapping between SOMs.

	Ensure that an SD Card is inserted into the Development Kit’s SD Card slot. This SD Card was prepared with a pre-built software image and will boot your phyCORE-AM57x Development Kit into Linux.

Tip

The SD Card Booting Essentials guide explains how to re-create the bootable SD Card in the event that it is missing, corrupted or outdated.

	Check that the Boot Switch Bank S5 is set to boot the phyCORE-AM57x Development Kit from the SD Card:

SD Boot Settings

[image: SD Card Boot Switch Settings]
[image: S5 Boot Switch Location]

Serial Communication Setup

	Using the provided RS-232 Serial Cable, connect the X18 Serial Debug Port of the phyCORE-AM57x Development Kit to an available USB port on your Host Machine.

[image: Serial Connection]

Windows 10 Instructions

Once the phyCORE-AM57x Development Kit is connected to your Windows Host Machine, you will need to determine the COM port in which the Linux serial console will be active on.

	Open your Windows Device Manager and expand the “Ports (COM & LPT)” section.

[image: Windows Device Manager]

	You should see one COM Port provided by the RS-232 Serial Cable. You will need this Port Number in the following steps in order to establish serial communication with Linux running on the target hardware.

	Download and open the terminal emulator of your preference. There are many options freely available, such as PuTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html] and TeraTerm [https://github.com/TeraTermProject/teraterm/releases].

Tip

This guide will use TeraTerm. The User Interface of your terminal emulator will look slightly different depending on which you decide to use, but serial port settings will generally look the same in all terminal emulators.

	Create a New Connection using your preferred terminal emulator:

[image: Open a New Terminal Session]

	When prompted to configure the connection, specify the connection type as “Serial” and select the COM Port number found in the previous steps.

	Further setup of your serial connection is usually necessary in TeraTerm. Access the “Serial Port” settings in the “Setup” tab.

[image: Setup Serial Port]

	Configure the connection for 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control.

[image: Terminal Settings]

	Once you have an empty terminal session, your host system is effectively listening for console data over the COM port you selected. The documentation for the phyCORE-AM57x (outlined throughout this wiki) will generally refer to this serial session as the “Target (Linux)” console, as opposed to your Linux Host’s console.

Linux Instructions

Once the phyCORE-AM57x Development Kit is connected to your Linux Host Machine, the RS-232 Serial Cable will come up as one device; /dev/ttyUSB0.

	Open the serial connection with minicom (which you may need to install first).

Host (Ubuntu)

sudo apt-get update && sudo apt-get install minicom
minicom -D /dev/ttyUSB0 -b 115200

Note

If you have more than 1x USB serial device connected (this could be a second Development Kit, for example), you will have to determine which /dev/tty* device is specific to your target hardware (otherwise, you may connect to the wrong serial device). Some techniques for determining this include:

	Use dmesg to see which device connected most recently (dmesg will output all kernel messages and tail just limits this to the last 10 lines).

sudo dmesg | tail

Scan the output for your serial device and you will see the specific device enumerator (/dev/tty*) that the kernel assigned to the device.

	Alternatively, use the following command to output all serial devices detected by the kernel at once:

ls -l /dev/serial/by-id

The output will show which /dev/tty* device enumerator got assigned to each serial device and this has the added benefit of displaying some driver information associated with each device’s serial port. This can be helpful in determining which /dev/tty* file corresponds to which physical piece of hardware.

Power the Board

Using the included 12V/2A power supply, provide power to the phyCORE-AM57x Development Kit’s X4 Power Connector. The system will automatically boot once power is supplied and you should begin to see activity on the serial console. At the conclusion of the boot log, you should be presented with a Linux login prompt.

Expected Output

 ____ _ _ __ __ _____ _____ ____
| _ \ | | | |\ \ / /|_ _|| ____| / ___|
| |_) || |_| | \ V / | | | _| | |
| __/ | _ | | | | | | |___ | |___
|_| |_| |_| |_| |_| |_____| ____|

__ __ ___ ____ _ _ ____ _____
\ \ / / / _ \ / ___|| | | || _ \ |_ _|
 \ V / | | | || | _ | | | || |_) | | |
 | | | |_| || |_| || |_| || _ < | |
 |_| ___/ ____| ___/ |_| _\ |_|

 yogurt (Phytec Base Distribution) BSP-Yocto-AM57x-PD23.1.0 phycore-am57xx-1 ttyS2

 phycore-am57xx-1 login:

Login using “root” (no password is required).

Tip

You may find that commands and text in the terminal wrap over themselves if they extend too far on a single line in your terminal window. To improve usability and to prevent text from wrapping over itself use the following command once you have your window sized to your liking:

Target (Linux)

shopt -s checkwinsize && resize

Safe Shutdown

Before removing power from the Development Kit, it is recommend to initiate a safe shutdown whenever possible. This will help to avoid issues such as filesystem corruption, which can prevent the hardware from booting up properly the next time it is needed.

	To initiate a shutdown run the following command:

Target (Linux)

poweroff

	Once you see the “reboot: Power down” message it is safe to remove the power supply from the Development Kit.

Expected Output

[115.208115] systemd-shutdown[1]: Powering off.
[115.278661] reboot: Power down

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

 Interface Guides

Interface Guides

These interface guides provide steps for evaluating the peripheral interfaces supported by the phyCORE-AM57x development kit directly in Linux userspace. If an interface isn’t mentioned here but you expect the AM57x Soc to support it, it may be that the interface is supported by the SOM but not on the development kit. Feel free to reach out on PHYTEC’s Support Portal [http://support.phytec.com/] if you have any questions!

	Audio

	Bluetooth

	Camera

	CAN

	Display

	EEPROM

	eMMC

	Ethernet

	Expansion Connector

	Fan

	GPIO

	HDMI

	I2C

	JTAG

	PCIe

	Power and Reset Buttons

	Power LEDs

	QSPI NOR Flash

	RTC

	SATA

	SD Card

	SPI

	Thermal Zones

	UART

	USB

	USB WebCam

	WiFi

 Audio

Audio

The phyCORE-AM57x offers three different headers to access the audio interface: 3.5 mm audio jacks, a 2-pin header, and USB. This guide will demonstrate how to play and record audio using the phyCORE-AM57x development kit via USB. For additional information about the phyCORE-AM57x Audio, please section 29 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Audio Locations

	Location

	Description

	Header Type

	X13

	Headset Output

	3.5mm Jack

	X14

	Line In

	3.5mm Jack

	X15

	Line Out

	3.5mm Jack

	X16

	Microphone In

	3.5mm Jack

	X20

	Speaker Out

	2-pin Header

	X19

	USB2.0

	USB

[image: ../_images/pb-057948_audio.png]

Requirements

	Headset with Microphone and USB Connection [https://www.logitech.com/en-us/products/headsets/h570e-usb-noise-cancelling.html]

Hardware Setup

	With the kit powered off, make sure the jumpers JP3, JP6 and JP10 are closed.

[image: USB2.0 Host Jumper Settings]

	Power the kit back on and plug the headset into the USB2.0 (X19) connector.

[image: USB Audio Connection]

	After the device is connected, the Linux console will present a similar message as seen below:

Expected Output

 [218.177573] usb 3-1: new full-speed USB device number 3 using xhci-hcd
 [218.640926] usb 3-1: Warning! Unlikely big volume range (=4125), cval->res is probably wrong.
 [218.649521] usb 3-1: [11] FU [Sidetone Playback Volume] ch = 1, val = 0/4125/1
 [218.745587] input: Logitech Inc Logitech H570e Stereo as /devices/platform/44000000.ocp/488c0000.omap_dwc3_2/488d0000.usb/xhci-hcd.2.auto/usb3/3-1/3-1:1.3/0003:046D:0A56.0002/input/input2
 [218.827835] hid-generic 0003:046D:0A56.0002: input: USB HID v1.11 Device [Logitech Inc Logitech H570e Stereo] on usb-xhci-hcd.2.auto-1/input3

Verify Device Connection

	Verify that the USB device was recognized by the kit.

Target (Linux)

lsusb

You will see the logitech headset in the output:

Example Output

root@am57xx-phycore-kit:~# lsusb
Bus 004 Device 001: ID 1d6b:0003
Bus 003 Device 003: ID 046d:0a56 Logitech, Inc.
Bus 003 Device 001: ID 1d6b:0002
Bus 002 Device 001: ID 1d6b:0003
Bus 001 Device 001: ID 1d6b:0002

Playing Audio

	First copy an audio file onto the development kit. This example will use the wget command, which requires a network connection. Discover more mediums that can assist in copying files by following the guide Copying Files to the Device.

	Use the following command to download an audio file to the development kit.

Target (Linux)

 wget https://www2.cs.uic.edu/~i101/SoundFiles/ImperialMarch60.wav

Note

You can find more audio files here [https://www2.cs.uic.edu/~i101/SoundFiles/].

	Play the audio file.

Target (Linux)

aplay -Dsysdefault:CARD=Stereo ImperialMarch60.wav

Capturing Sound

	Run the following command to record audio using the microphone on the headset

Target (Linux)

arecord -d 10 -f cd -t wav -Dsysdefault:CARD=Stereo test.wav

	Use “aplay” to hear the recording.

Target (Linux)

aplay -Dsysdefault:CARD=Stereo test.wav

Audio Mixer Settings

Control volume and various other audio setting using the ALSA soundcard driver’s ‘amixer’ or ‘alsamixer’ commands.

Changing Settings via GUI

The command ‘alsamixer’ allows the user to adjust, volume, soundcard devices and many other settings with an interactive GUI. This command is recommended for users who are note familiar with ALSA.

	Use the following command to access the settings GUI.

Target (Linux)

alsamixer

A GUI interface will pop up that can be navigated with the arrow keys.

[image: Alsamixer GUI]

	Press “F6” to select the device.

	Exit GUI by pressing the “esc”.

	It is a good practice to save the mixer settings found to be good and reload them after every boot.

Target (Linux)

alsactl -f board.aconf store

	When you decide to reboot the development kit, run the following command to restore mixer settings.

Target (Linux)

alsactl -f board.aconf restore

Changing Settings via Terminal Commands

The command ‘amixer’ allows the user to adjust, volume, soundcard devices and many other settings with terminal commands. This command is recommended for users who are familiar with ALSA.

	For example, the following command sets the soundcard’s left line input volume to 80% and right line input to 40%, unmute it, and select it as a source for capture (recording).

Targetr (Linux)

amixer -c 0 sset Line,0 80%,40% unmute cap

	To learn more about this tool use the ‘–help’ command to see the various options available

Target (Linux)

amixer --help

 Bluetooth

Bluetooth

The phyCORE-AM57x development kit does not have Bluetooth integrated on the carrier board, but it can support external Bluetooth modules via the 2x16 pin header (X26). This guide will walk through the basic setup and usage of WiLink8 WiFi module (PCM-949 or PCM-958) by scanning for other Bluetooth devices. For more information on Bluetooth on the phyCORE-AM57x, please see section 19 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: ../_images/pb-057948_wifi-bt.png]

Requirements

	Bluetooth Module

	WiLink8 WiFi Module (PCM-949)

	Contact Sales [https://www.phytec.com/contact/]

Hardware Setup

	Power off and remove power from the kit.

	Connect the module at X26.

[image: ../_images/pb-057948_wifi-bt-pcm949.png]

Enable the Bootloader Overlay

The bootloader environment needs to be modified in order to enable the Bluetooth device tree overlay before booting into Linux.

	Power on the development kit and hit any key to stop in U-Boot.

Target (U-Boot)

setenv overlays am57xx-phytec-pcm-948-wlan-wilink8.dtbo
boot

Note

For more information about overlays see the guide Configuring the Bootloader.

Initializing BT

	Initialize the Bluetooth module by attaching UART10 to the Bluetooth’s driver:

Target (Linux)

hciattach /dev/ttyS9 texas

Expected Output

root@am57xx-phycore-kit:~# hciattach /dev/ttyS9 texas
Found a Texas Instruments' chip!
Firmware file : /lib/firmware/ti-connectivity/TIInit_11.8.32.bts
Loaded BTS script version 1
texas: changing baud rate to 3000000, flow control to 1
[51.051613] Bluetooth: Core ver 2.22
[51.055395] NET: Registered protocol family 31
[51.059863] Bluetooth: HCI device and connection manager initialized
[51.066336] Bluetooth: HCI socket layer initialized
[51.071241] Bluetooth: L2CAP socket layer initialized
[51.076424] Bluetooth: SCO socket layer initialized
[51.090657] Bluetooth: HCI UART driver ver 2.3
[51.095172] Bluetooth: HCI UART protocol H4 registered
[51.100386] Bluetooth: HCI UART protocol LL registered
[51.106221] Bluetooth: HCI UART protocol Broadcom registered
Device setup complete

	Scanning for Bluetooth devices:

Target (Linux)

hcitool scan

Expected Output

root@am57xx-phycore-kit:~# hcitool scan
Scanning ...
98:5F:D3:E7:5B:57 DESKTOP-LUEK3D8
 B4:69:21:71:30:7B DESKTOP-8HV09AF

	Scanning for Bluetooth LE devices:

Target (Linux)

 hcitool lescan

Expected Output

root@am57xx-phycore-kit:~# hcitool lescan
LE Scan ...
23:95:89:DE:90:C8 (unknown)
2A:66:5C:F2:E2:83 (unknown)
33:DE:FC:F7:26:F5 (unknown)
29:CA:92:CB:CF:1C (unknown)
4C:87:5D:0D:8E:87 (unknown)
4C:87:5D:0D:8E:87 LE-headPhone
2F:CC:A7:01:06:9A (unknown)
55:5F:ED:13:08:D0 (unknown)
7E:2A:E0:CF:9C:9A (unknown)
38:38:5B:37:82:00 (unknown)
33:DE:FC:F7:26:F5 (unknown)
7E:2A:E0:CF:9C:9A (unknown)
14:07:86:9C:41:3F (unknown)
6B:87:7A:0E:7B:94 (unknown)
6B:87:7A:0E:7B:94 (unknown)
2F:CC:A7:01:06:9A (unknown)
55:5F:ED:13:08:D0 (unknown)

 Camera

Camera

The phyCORE-AM57x development kit provides access to an 8-bit parallel camera at connector X23. Data and control signals are transmitted in parallel via a 33-pin FFC cable. This minimizes the interface effort and still enables compatibility of the camera types. This guide will walk through the basic validation of this camera interface by utilizing a GStreamer Pipeline to feed video captured by the camera to the LCD-018 display. For more information on the Camera interface, please see section 28 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: ../_images/pb-057948_camera.png]

Requirements

	VM-016-COL-P [https://www.phytec.eu/en/produkte/embedded-imaging/kameramodule/vm-016-phycam-p/#technische-details/]

	Contact Sales [https://www.phytec.com/contact/]

	LCD-018-070-KAP

	7” LVDS Capacitive Touch Display

	Contact Sales [https://www.phytec.com/contact/]

Note

Be sure that you are not using a headless BSP image as this does not support the display interface. See Release Notes for more information.

Hardware Setup

Note

Carrier Board PCB revision 1435.2 can be used if solder jumper J6 is set to position 2+3.

[image: Camera Jumper Settings for 1435.2 Carrier Board]

	With the development kit powered off and the power supply removed, connect the phyCAM-P camera to the carrier board using the supplied ribbon cable to connector X23.

	Open the X23 connector by pushing the dark brown tab upwords.

	Insert the ribbon cable into the connector, with the blue tape facing away from the SOM. Meaning pin 1 of the carrier board should match up with pin 33 of the camera.

	Once the ribbon cable has been seated into the connector, pull the dark brown tab down.

[image: Camera to Carrier Board Connection]

	When working with the VM-016 camera model, verify that JP4 is set to the 2+3 position.

[image: ../_images/pb-057948_camera-jp4.png]

	Verify that the DIP switches (S1) on the back of the LCD-018 are set to backlight to use the PWM setting.

[image: ../_images/pb-057948_display-S1-pwm.jpg]

Note

The backlight can be set to either: “always on”, “always off”, “PWM”, or “potentiometer”. See the Display guide for more information.

	Connect the display to the connectors at X25.

	Open the X25 connector by gently pulling the black tab toward the edge of the board.

	Insert the ribbon cable into the connector, with the blue tape facing up.

	Once the ribbon cable has been seated into the connector, pull the black tab back towards it’s closed position.

	The red connector should be a standard push in connection.

[image: LCD to Carrier Board Connection]

Taking a Video

	Stop the qtdemo and weston demos.

Target (Linux)

systemctl stop phytec-qtdemo
systemctl stop weston.socket

	Now take the video feed from the camera and output it to the display:

Target (Linux)

gst-launch-1.0 v4l2src device=/dev/video1 num-buffers=1000 io-mode=4 ! 'video/x-raw, format=(string)YUY2, width=(int)1280, height=(int)1024' ! vpe num-input-buffers=8 ! queue ! kmssink

	The camera feed should be displayed on the LCD. Use Ctrl + C to stop.

Taking a Picture

	To capture a JPG picture named “smile.jpg”, use the following gstreamer pipeline command.

Target (Linux)

 media-ctl -V '"ar0144 2-0010":0 [fmt:SGRBG8_1X8/1280x800]'
 gst-launch-1.0 v4l2src num-buffers=5 device=/dev/video0 ! video/x-bayer,format=grbg,depth=8,width=1280,height=800 ! bayer2rgb ! videoconvert ! jpegenc ! multifilesink location=smile.jpg

Note

“ar0144” refers to the CMOS digital image sensor with the pixel array of 1280H x 800V being used to capture images.

“2-0010” refers to the I2C device being used. In this case I2C1 device is being utilized.

Viewing Picture

This example will use the Secure Copy Protocol (SCP), which requires a network connection. Discover more mediums that can assist in copying files by following the guide Copying Files to the Device.

Use a local network and copy the file from the development kit to your host machine (Ubuntu or Windows).

	Connect the development kit to your local network using either ethernet port.

	Confirm the development kit’s ethernet IP address (DHCP). For more information on how to change the from a static IP address to a DHCP address, see the Ethernet interface guide.

Target (Linux)

 ip addr

	Transfer the image via Windows Command Prompt or Linux terminal.

Host (Ubuntu or Windows)

 sudo scp root@<devkit_ip_address>:/root/smile.jpg ./Downloads/

	Open your host machine’s Downloads folder. You should see an image named “smile.jpg”.

 CAN

CAN

The phyCORE-AM57x SOM can support six CAN interfaces. The development kit has two CAN port that is easily accessible for interaction. The development kit breaks out both CAN1 and CAN2 interfaces to the X6 and X5 headers respectively for general purpose evaluation. This guide will walk-through the basic usage of this interface by transferring data to and from a host PC provisioned with PCAN-View Software. To learn more information about the phyCORE-AM57x CAN serial interface, please see section 17 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: phyCORE-AM57x CAN Locations]

Requirements

	PCAN-USB Adapter [https://phytools.com/collections/usb-interfaces/products/pcan-usb-adapter]

	CAN Cable [https://phytools.com/products/pcan-cable-2-w-120-ohm-termination]

	PCAN-View Software [https://phytools.com/products/pcan-view-free-can-software]

	(Optional) DB9 Male 2x5 to RS232 Female Cable

	Included in development kit

	Only needed for testing CAN2

Setup the CAN Network

	Connect the PCAN-USB adapter to your host PC (USB port) and the CAN1 connector at X6 on the development kit.

[image: CAN1 to Carrier Board Connection]
[image: CAN Connection Diagram]

Note

When the carrier board is the end point of a CAN network add 120Ohm termination impedance by closing either JP1 or JP2. JP1 impacts the impedane or CAN1. JP2 impacts the impedance of CAN2. Please see the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation] for more information.

[image: ../_images/pb-057948_can-jp1-jp2.png]

Setup CAN Software

	Open PCAN-View on your host PC and select the device from the available hardware. Set the Bit rate field to 1 Mbit/s and click OK.

Note

If you cannot find your device in the listed hardware, ensure that you have the correct driver installed on your host PC. You can obtain the driver here [https://www.peak-system.com/quick/DrvSetup].

	Using the phyCORE-AM57x Linux console, use the following commands to set up the CAN1 interface (CAN0 in software) and configure the bit rate. For this example 1 MBit/s is used.

Target (Linux)

ip link set can0 down
ip link set can0 up type can bitrate 1000000
ip link set can0 up

Send CAN messages

In this example you will test data transfer from the phyCORE-AM57x to the host PC.

	Make sure PCAN View is open on your host PC

	Enter the following on the phyCORE-AM57x console to send data on the CAN bus.

Target (Linux)

cansend can0 001#DE.AD.BE.EF.CA.FE.BA.BE

	In PCAN-View verify that the data is correct in the “Receive” window.

Receive CAN messages

In this example you will test data traveling in the opposite direction - from the host PC to the phyCORE-AM57x.

	Enter the following command on the phyCORE-AM57x console to put the CAN interface into listening mode:

Target (Linux)

candump can0

	On your host PC in PCAN-View, create a new transmit message. Enter DEADBEEFCAFEBABE as the data (hex).

	Select the message. You can press the space-bar a few times to send the message more than once.

	On the phyCORE-AM57x you should see that the message has been received.

Expected Output

root@phycore-am57xx-1:~# candump can0
can0 000 [8] DE AD BE EF CA FE BA BE

	To exit listening mode on the phyCORE-AM57x enter Ctrl + C to stop candump

 Display

Display

The phyCORE-AM57x supports an LVDS LCD at X25, which is comprised of an LVDS signal connector and a power connector. These connectors provide connection to support various PHYTEC LCDs, such as LCD-018. This guide will show the basic usage of an LVDS display with the phyCORE-AM57x development kit. For more information on the on the display interfaces, see section 26 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: ../_images/pb-057948_display.png]

Requirements

	LCD-018-070-KAP

	7” LVDS Capacitive Touch Display

	Contact Sales [https://www.phytec.com/contact/]

	LCD-017-070W

	7” Display with Resistive Touch

	Contact Sales [https://www.phytec.com/contact/]

Note

Be sure that you are not using a headless BSP image as this does not support the display interface. See Release Notes for more information.

Connecting the Display

	Verify that the DIP switches (S1) on the back of the LCD-018 are set to backlight to use the PWM setting.

[image: ../_images/pb-057948_display-S1-pwm.jpg]

Note

The backlight can be set to either: “always on”, “always off”, “PWM”, or “potentiometer”. (there is a point on the display with reference designator R30). In order to control the backlight via the phyCORE-AM57x as described in this guide, the boot switch needs to be set to PWM. (1,2,4 OFF; 3 ON).

	With the kit powered off and the power supply removed, connect the display to the connectors at X25.

	Open the X25 connector by gently pulling the black tab toward the edge of the board.

	Insert the ribbon cable into the connector, with the blue tape facing up.

	Once the ribbon cable has been seated into the connector, pull the black tab back towards it’s closed position.

	The red connector should be a standard push in connection.

[image: LCD to Carrier Board Connection]

Loading the Display

	Power on the development kit and hit any key to stop in U-Boot.

	Load the device tree overlay needed for operating the display then boot into Linux.

Target (U-Boot)

setenv overlays am57xx-phytec-pcm-948-lcd-018.dtbo
saveenv
boot

Note

For more information about overlays see chapter Configuring the Bootloader.

	While the kit is booting, the PHYTEC logo with a loading bar should display on the screen. This should be followed by a “Multitouch” demo should appear.

Framebuffer Test

	Stop the qtdemo and weston demos.

Target (Linux)

systemctl stop phytec-qtdemo
systemctl stop weston.socket

	Run the following command to test colors and patterens.

Target (Linux)

fbtest

Expected Output

root@phycore-am57xx-1:~# fbtest
Using drawops cfb32 (32 bpp packed pixels)
Available visuals:
 Monochrome
 Grayscale 256
 Truecolor 8:8:8:0
Using visops truecolor
Running all tests
test001: PASSED
test002: PASSED
test004: PASSED
test006: PASSED
test008: PASSED
test009: PASSED

[image: phyCORE-AM57x HDMI Test 1]
[image: phyCORE-AM57x HDMI Test 2]
[image: phyCORE-AM57x HDMI Test 4]
[image: phyCORE-AM57x HDMI Test 6]
[image: phyCORE-AM57x HDMI Test 8]
[image: phyCORE-AM57x HDMI Test 9]

	Power on the board and boot into Linux.

	An application called the Matrix-GUI will appear on the display.

Controlling the Backlight

The backlight brightness of the display is controlled by a PWM and can be configured via Linux in the sysfs.

	To read the current backlight brightness:

Target (Linux)

cat /sys/devices/platform/backlight/backlight/backlight/brightness

	Set “brightness” to values 0-7, with 7 being the brightest. For example:

Target (Linux)

echo 7 > /sys/devices/platform/backlight/backlight/backlight/brightness

	Set bl_power to turn backlight off/on. Valid values are 1 for off and 0 for on:

Target (Linux)

echo 1 > /sys/devices/platform/backlight/backlight/backlight/bl_power
echo 0 > /sys/devices/platform/backlight/backlight/backlight/bl_power

Note

Not seeing the display brightness change? Check the above Note!

 EEPROM

EEPROM

EEPROM stands for Electrically Erasable Programmable Read-Only Memory. It is a non-volatile memory that can be programmed and erased electrically. The nonvolatile memory available on the phyCORE-AM57x SOM is a 4KB EEPROM. The device is connected to the I2C0 interface at address 0x50. This guide provides instructions for how to interact with the EEPROM from Linux. To learn more information about the phyCORE-AM57x system memory, please see section 6.4 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Backup the Original EEPROM Contents

Note

The default phyCORE-AM57x Development Kit leverages the EEPROM during boot for hardware introspection, thus clearing or corrupting the EEPROM contents will cause boot behavior to change without employing workarounds.

See the Configuring the Bootloader guide for disabling EEPROM hardware introspection in the bootloader environment.
See the Using the PHYTEC EEPROM Flashtool guide for more information about the default contents and useage of the EEPROM.

	Before attempting the other steps outlined in this article it is highly recommended to back up the contents of your EEPROM as it contains machine specific information used during boot. Use the following command to create a back up:

Target (Linux)

dd if=/sys/bus/i2c/devices/0-0050/eeprom of=/tmp/eeprom_backup bs=4096 count=1

Verify the EEPROM is detected

	Use the following command to print the name of the EEPROM. The expected result is 24c32 which corresponds to the device driver name in Linux.

Target (Linux)

cat /sys/class/i2c-dev/i2c-0/device/0-0050/name

Write to the EEPROM

	Create data that you want to store on the EEPROM. In this example a hello.img file was created with the text “Hello World”.

Target (Linux)

echo "Hello World" > hello.img

	Write the file (hello.img) to the EEPROM

Target (Linux)

dd if=hello.img of=/sys/class/i2c-dev/i2c-0/device/0-0050/eeprom bs=1 count=4096

Read from the EEPROM

	Dump the contents of the entire 4KB EEPROM.

Target (Linux)

dd if=/sys/class/i2c-dev/i2c-0/device/0-0050/eeprom bs=1 count=4096 | hexdump -C

If hello.img was written to the EEPROM in the previous step you should see the following output:

Example Output

00000000 48 65 6c 6c 6f 5f 57 72 6f 6c 64 0a 68 00 00 34 |Hello World.h..4|
00000010 31 33 30 30 31 31 31 49 41 32 00 00 00 00 00 32 |1300111IA2.....2|
00000020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
*
00001000
4096+0 records in
4096+0 records out

Erase the EEPROM

	Write all zeros to the entire density of the EEPROM to erase the contents.

Target (Linux)

dd if=/dev/zero of=/sys/bus/i2c/devices/0-0050/eeprom bs=4096 count=1

Restore the Original EEPROM Contents

	Once evalution of the EEPROM is complete, it is recommended to restore the original contents of the EEPROM as it contains machine specific information used during boot.

Target (Linux)

dd if=/tmp/eeprom_backup of=/sys/bus/i2c/devices/0-0050/eeprom bs=4096 count=1

Lose the Original Contents Of the EEPROM?

If something went wrong and the EEPROM is empty, we got you covered. Head over to the Using the PHYTEC EEPROM Flashtool guide.

 eMMC

eMMC

An embedded Multi-Media Card (eMMC) flash device is populated on the phyCORE-AM57x SOM as a programmable nonvolatile storage. This guide will show you how to mount, read from, and write to the phyCORE-AM57x onboard eMMC. To learn more information about the phyCORE-AM57x eMMC flash memory, please see section 6.2 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Note

In order to follow this guide your phyCORE-AM62x development kit must be booting from SD Card.

Viewing Available eMMC Partition Information

Note

Be careful with the fdisk command. You can accidentally delete the contents of other memory devices connected to the system so it is recommended to copy and paste the following commands.

	You can verify the eMMC partitions by using the following command to list the partition information of known MMC devices:

Target (Linux)

 fdisk -l

Expected Output

root@phycore-am57xx-1:~# fdisk -l
Disk /dev/mmcblk1: 7264 MB, 7616856064 bytes, 14876672 sectors
922 cylinders, 256 heads, 63 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk1p1 0,0,2 1023,255,63 1 14876671 14876671 7263M ee EFI GPT
Partition 1 has different physical/logical end:
 phys=(1023,255,63) logical=(922,105,41)
Disk /dev/mmcblk0: 15 GB, 15931539456 bytes, 31116288 sectors
243096 cylinders, 4 heads, 32 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk0p1 * 16,0,1 1023,3,32 2048 133119 131072 64.0M c Win95 FAT32 (LBA)
/dev/mmcblk0p2 1023,3,32 1023,3,32 133120 2036277 1903158 929M 83 Linux

	As can be seen in the above Example Output, this eMMC has already been formatted with a data partition, /dev/mmcblk1p1. To follow the rest of this guide, one data partition will be required.

	If you did not see a /dev/mmcblk1p* partition refer to the following commands in order to create one:

Target (Linux)

 fdisk /dev/mmcblk0

 # Enter into fdisk interactive session:
 # Use the following commands in order to create a Linux partition.

 n # create new partition
 p # partition type
 1 # partition number
 <Enter> # first sector
 <Enter> # last sector
 t # change partition type
 83 # linux filesystem
 w # write changes

	Now reboot the system and you should see the eMMC device mounted automatically in the following steps.

Target (Linux)

 reboot

	Verify the eMMC partitions.

Target (Linux)

 fdisk -l

Setup a Root Filesystem on the eMMC

In order to interact with the eMMC, the eMMC has to be partitioned and a rootfilesystem needs to be setup.

	Create a ext4 type root filesystem

Target (Linux)

mkfs.ext4 /dev/mmcblk1p1

Expected Output

root@phycore-am57xx-1:~# mkfs.ext4 /dev/mmcblk1p1
mke2fs 1.45.7 (28-Jan-2021)
Discarding device blocks: done
Creating filesystem with 1859576 4k blocks and 465120 inodes
Filesystem UUID: 87f11df6-48ec-4ac9-bbe9-174ba7d1ff7a
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

Mounting the eMMC

Typically, if the filesystem is already setup then it should mount automatically during boot at /run/media/. These steps will help you manually mount the filesystem.

	In order to read and write to the eMMC you will need to create a directory and then mount the partition you want to read from to that directory. Follow the steps below to mount partition 1 (“p1”) of the eMMC (you should replace this with the “Linux” type partition if your eMMC was pre-flashed):

Target (Linux)

mkdir temp
mount /dev/mmcblk1p1 temp/

	If you mounted a newly created partition it will likely be empty. If you had a pre-flashed eMMC then you will notice that the contents of the mounted directory look like the root directory!

Target (Linux)

ls temp

Writing to the eMMC

	You can write to the eMMC by using the copy or move commands just like in Linux.

Target (Linux)

echo "Hello World" > test.txt
cp test.txt temp/

	An example of what the contents look like following the copy is provided below:

Example Output

root@am57xx-phycore-kit:~# ls temp/
test.txt

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum test.txt ~/temp/test.txt

Expected Output

root@phycore-am57xx-1:~# md5sum test.txt ~/temp/test.txt
e59ff97941044f85df5297e1c302d260 test.txt
e59ff97941044f85df5297e1c302d260 /root/temp/test.txt

Reading from the eMMC

	Use the copy (cp) or move (mv) command to put this file back onto your SD card.

Target (Linux)

cp ~/temp/test.txt ~/test-READ.txt

	Make sure the file was not corrupted during the transfer using md5sum.

Target (Linux)

md5sum ~/temp/test.txt test-READ.txt

Expected Output

root@phycore-am57xx-1:~# md5sum ~/temp/test.txt test-READ.txt
e59ff97941044f85df5297e1c302d260 /root/temp/test.txt
e59ff97941044f85df5297e1c302d260 test-READ.txt

 Ethernet

Ethernet

The phyCORE-AM57x has two external Ethernet ports. These gigabit ethernet links are provided via the ETH0 and ETH1 RJ45 connectors on the phyCORE-AM57x development kit. This guide shows you how to connect and use these interfaces. To learn more information about the phyCORE-AM57x ethernet serial interface, please section 8.2 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: ../_images/pb-057948_eth-callout.png]

Note

If a valid connection between the phyCORE-AM57x development kit and your network is made before boot-up then the kernel will automatically secure a connection and you will be assigned an ip address from the DHCP Server.

Requirements

	CAT5e cable (comes included with the development kit)

	Network switch connected to a DHCP enabled network

[image: Network Connection Block Diagram]

Ethernet Connection

If a valid connection between the phyCORE-AM57x development kit and a DHCP enabled network is made then the phyCORE-AM57x will automatically negotiate a connection and will be assigned a unique IPv4 address.

Expected Output

root@phycore-am57xx-1:~# [2106.744689] cpsw-switch 48484000.switch eth0: Link is Up - 1Gbps/Full - flow control off
[2106.752868] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

	After the connection is established, you can try the following command to ping a host. We’ll ping google.com in this example:

Target (Linux)

ping google.com -c 10

Expected Output

root@phycore-am57xx-1:~# ping google.com -c 10
PING google.com (142.250.217.110): 56 data bytes
64 bytes from 142.250.217.110: seq=0 ttl=57 time=5.799 ms
64 bytes from 142.250.217.110: seq=1 ttl=57 time=5.004 ms
64 bytes from 142.250.217.110: seq=2 ttl=57 time=5.066 ms
64 bytes from 142.250.217.110: seq=3 ttl=57 time=5.615 ms
64 bytes from 142.250.217.110: seq=4 ttl=57 time=5.035 ms
64 bytes from 142.250.217.110: seq=5 ttl=57 time=5.127 ms
64 bytes from 142.250.217.110: seq=6 ttl=57 time=5.035 ms
64 bytes from 142.250.217.110: seq=7 ttl=57 time=5.005 ms
64 bytes from 142.250.217.110: seq=8 ttl=57 time=5.066 ms
64 bytes from 142.250.217.110: seq=9 ttl=57 time=5.126 ms

--- google.com ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 5.004/5.187/5.799 ms

Finding the IPv4 address

	To view the IP address assigned to your device’s network interfaces, use the following command:

Target (Linux)

ip addr

Expected Output

 root@phycore-am57xx-1:~# ip addr
 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether 5c:f8:21:0e:33:ba brd ff:ff:ff:ff:ff:ff
 inet 129.163.8.11/24 brd 129.163.8.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet 10.0.0.222/24 brd 10.0.0.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::5ef8:21ff:fe0e:33ba/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether 5c:f8:21:0e:33:bb brd ff:ff:ff:ff:ff:ff
4: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000
 link/sit 0.0.0.0 brd 0.0.0.0
5: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can
6: can1: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP group default qlen 10
 link/can

	In the above example, we can see that ETH0 was assigned the IPv4 address 10.0.0.222 and the other ethernet interfaces should behave similarly.

Changing Static IPv4 Address to DHCP

Regularly the IPv4 address assigned to your device is a static one. This limits the devices abilities. Abilities such as being remote accessed into with SSH. The following steps will show how to change the IPv4 address from static to DHCP for ETH1.

	Edit the file /lib/systemd/network/10-eth1.network to edit ETH1.

Target (Linux)

vi /lib/systemd/network/10-eth1.network

	Change DHCP to equal “True” and remove the “Address=XXX.X.X.XXX” line.

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Expected Output

[Match]
Name=eth1

[Network]
DHCP=True

	Reboot the system.

Target (Linux)

reboot

	View the DHCP IPv4 address assigned to your device.

Target (Linux)

ip addr

SSH into the phyCORE-AM57x

Once the phyCORE-AM57x’s IPv4 address is known, we can use it to interact with the development kit over the network. This section of the guide will walk through establishing an SSH connection with the hardware which can be a handy way to quickly get a second terminal session up and running. This might be useful if you are doing development directly on the target and need to process a second task in parallel with something running in the standard hardware UART console.

	In order to most easily follow this section of the guide, you will want both the phyCORE-AM57x and your Ubuntu host machine connected to the same local area network (LAN).

Note

A Windows Command Prompt can be used instead of a Linux machine. Just skip the following update commands.

	Using your Ubuntu host machine, start a new terminal session and use the following command to ensure that ssh is installed:

Host (Ubuntu)

 sudo apt-get update
 sudo apt-get install ssh

	The phyCORE-AM57x Linux BSP has a ssh server installed and enabled by default so it is already pre-configured to accept ssh connections. Establish a connection with the development kit using the Ubuntu host machine:

Host (Ubuntu)

ssh root@10.0.0.222

Expected Output

Warning: Permanently added '10.0.0.222' (ECDSA) to the list of known hosts.
 ____ _ _ __ __ _____ _____ ____
| _ \ | | | |\ \ / /|_ _|| ____| / ___|
| |_) || |_| | \ V / | | | _| | |
| __/ | _ | | | | | | |___ | |___
|_| |_| |_| |_| |_| |_____| ____|

__ __ ___ ____ _ _ ____ _____
\ \ / / / _ \ / ___|| | | || _ \ |_ _|
 \ V / | | | || | _ | | | || |_) | | |
 | | | |_| || |_| || |_| || _ < | |
 |_| ___/ ____| ___/ |_| _\ |_|

Yogurt (Phytec Base Distribution) BSP-Yocto-AM57x-PD23.1.0

root@phycore-am57xx-1:~#

	Leave ssh session with an “exit” command.

Host (Ubuntu)

 exit

Note

If you are having trouble establishing an SSH connection with the development kit:

	Double check that the development kit is actually connected to the network by pinging a known host such as google.com in the target console.

	Another common thing that trips up people is having a VPN enabled, which can cause your host machine to not find the phyCORE-AM57x target.

	A final place to troubleshoot network related issues between the phyCORE-AM57x and the Ubuntu host machine is the network adapter settings, especially if you are using a Virtual Machine to host Ubuntu. In VMWare Workstation, the Virtual Machine’s Network Adapter settings look like the following:

[image: ../_images/pb-057948_eth-VMsetting.jpg]
The network setting will likely have NAT selected by default and this should work for most development tasks. Switching this to Bridged and replicating a physical connection can sometimes help resolve problems depending on what you are trying to do.

Feel free to reach out at PHYTEC’s Support Portal [http://support.phytec.com/] if you have any questions or concerns.

 Expansion Connector

Expansion Connector

The Expansion Connector X28 allows access to many additional interfaces and is compatible with the PHYTEC Expansion Board (PCM-957). This expansion option was provided as a way to prototype custom solutions and test extended functionality with the phyCORE-AM57x carrier board. Standard interfaces such as UART, I2C, SPI, and various GPIO are made available here. To learn more information about this expansion, please see section 35 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: Expansion Connector Location]
[image: Expansion Board]
Here is a list of peripheral guides that utilize the PHYTEC Expansion Board (PCM-957).

	GPIO

	I2C

	SPI

	UART

 GPIO

GPIO

The General-Purpose Input/Output interfaces provides pins that can be configured as either inputs or outputs. Many of the signals available at the phyCORE-Connector can be multiplexed as GPIOs. The phyCORE-AM57x SOM brings out a selection of GPIOs and you can access many of these signals through some pre-made LED/Button circuits and with the help of the PHYTEC Expansion board (PCM-957). This guide walks through the basic steps of toggling and reading the state of these IO interfaces. To learn more information about the phyCORE-AM57x GPIO interface, please see section 40 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: User LED and Expansion Connector Locations]

Using LEDs and Push Buttons

This section of the guide will walk through the use of the pre-made LED circuits populated directly on the carrier board and SOM. These outputs have been pre-configured in the device tree for use.

User LEDs

	LED

	Location

	Signal

	/sys/class/leds/phycore:red@

	SOM (D1)

	GPIO4_9

	/sys/class/leds/phycore:green@

	SOM (D2)

	GPIO4_10

	/sys/class/leds/pcm-948:led1@

	CB (LED1)

	X_GPIO1_28

	/sys/class/leds/pcm-948:led2@

	CB (LED2)

	X_GPIO1_29

Toggling the User LEDs

The development kit has two user-configurable LEDs. In the next section “GPIO Signal Naming” you’ll see that these GPIO signals are already allocated to names pcm-948:led1/2. This indicates that a driver has claimed these gpios, and this can be confirmed by checking the linux device tree. The driver is gpio-leds.

	Let’s take a look at the sysfs interface that the gpio-leds driver are located in.

Target (Linux)

ls /sys/class/leds/

Expected Output

root@phycore-am57xx-1:~# ls /sys/class/leds/
mmc0::@ mmc1::@ pcm-948:led1@ pcm-948:led2@ phycore:green@ phycore:red@

	Let’s first turn ON LED1 (it should be OFF by default):

Target (Linux)

echo 1 > /sys/class/leds/pcm-948\:led1/brightness

Note

When the gpio-leds driver is attached to a PWM enabled pin, the brightness file will actually control the physical brightness of the pin and allow you to write values from 0 to 255 to do so. In this case, GPIO1_28 is not PWM capable pin and thus 0 corresponds to the LED being OFF and any other value sets the LED to ON.

	Turn OFF the LED

Target (Linux)

echo 0 > /sys/class/leds/pcm-948\:led1/brightness

	We can also leverage the driver to do more interesting things with the LED. Let’s configure the GPIO as a Linux heartbeat for example:

Target (Linux)

echo "heartbeat" > /sys/class/leds/pcm-948\:led1/trigger

	The heartbeat trigger can be turned OFF like so:

Target (Linux)

echo "none" > /sys/class/leds/pcm-948\:led1/trigger

The other LED, pcm-948:led2, can be controlled in the same way.

Reading the User Buttons (S3/S4)

We can see in both the development kit schematic and in /sys/kernel/debug/gpio that GPIO1_26 is connected to the user button S1 and is represented in software as gpio-26 with the name “home” and the user button S2 and is represented in software as gpio-27 with the name “menu” . We can see in the device tree that these GPIO are assigned to the gpio-keys driver.

	We can poll the state of the input GPIO just by reading /sys/kernel/debug/gpio like we already did above:

Target (Linux)

cat /sys/kernel/debug/gpio | grep home

Target (Linux)

root@phycore-am57xx-1:~# cat /sys/kernel/debug/gpio | grep home
gpio-26 (|home) in lo IRQ

	Now try running that command again while holding down the S1 button:

Expected Output

root@phycore-am57xx-1:~# cat /sys/kernel/debug/gpio | grep home
gpio-26 (|home) in hi IRQ

We can see that the pin goes from “lo” to “hi” when the button is pressed.

	Another option for viewing button presses is to leverage the gpio-keys driver and the input events that it generates:

Target (Linux)

cat /dev/input/event0 | hexdump

With that above command running as an active process, try pushing the User buttons S1 and S2. You should see a large block of hexadecimal data printed to the screen for each button press.

Note

These blocks of data are input_event structures that identify the key code assigned to the GPIO (see the linux device tree), when the button press occurred, and the type of button press event that was generated (long press, single press, button release, etc). See Documentation/input/input.rst within the kernel source for more information.

	Enter Ctrl + C to end the process and resume control of the console.

Advanced Steps to Impress your Mom!

LED Blink

	To create a script that automatically blinks the LED, open a text editor:

Target (Linux)

vi ~/blink.sh

	Edit the contents of the new file to reflect the code below and save the file:

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

~/blink.sh

#!/bin/sh
echo 0 > /sys/class/leds/phycore:red/brightness
echo 0 > /sys/class/leds/phycore:green/brightness

for i in `seq 1 10`; do
echo 1 > /sys/class/leds/phycore:red/brightness
echo 0 > /sys/class/leds/phycore:green/brightness
sleep 1
echo 0 > /sys/class/leds/phycore:red/brightness
echo 1 > /sys/class/leds/phycore:green/brightness
sleep 1
done

	Make your file executable:

Target (Linux)

chmod +x ~/blink.sh

	Now run the script:

Target (Linux)

~/blink.sh

User Button via Expansion Board

This section of the guide will walk through the use of a user made Push Button populated directly onto the PHYTEC Expansion Board (PCM-957).

	With the phyCORE-AM57x powered off and with the power supply removed, hook up a through-hole push button to the pin 23C and to the supply rail at pin 51C. Use the following circuit diagram for reference:

[image: User Button Wiring Diagram]

Note

GPIO4_20 is an undefined signal in the device tree and therefore will default to its reset state, which internally pulls down the pin. Thus, we need to pull the signal high when the button is pressed.

	Once wired up, reconnect the power supply and boot into Linux.

	Use the following command to export the GPIO signal in sysfs:

Target (Linux)

echo 180 > /sys/class/gpio/export

	Set GPIO4_20 as an input:

Target (Linux)

echo in > /sys/class/gpio/gpio180/direction

	Lets try polling the state of the GPIO4_20 signal:

Target (Linux)

cat /sys/class/gpio/gpio180/value

Expected Output

root@phycore-am57xx-1:~# cat /sys/class/gpio/gpio180/value
0

	Now try polling the state of the button again while pressing and holding the push button we just wired up! You should see that the state of the signal went from 0 to a 1.

GPIO Signal Naming

The GPIO pin numbering of the phyCORE-AM57x schematic is represented differently from the device identifier used by the kernel. Therefore in GPIO hardware signal naming convention looks very different from the software GPIO naming convention. This section will walk through how to calcualte the GPIO signals and shoe how to identify which GPIO signals are in use on the developmeny kit.

Hardware to Software

	Using the development kit’s carrier board and SOM schematics the hardware GPIO signal GPIO1_28 (LED1) at SOM connector A52 pin.

	See which GPIO signals have been allocated by running the following command.

Target (Linux)

cat /sys/kernel/debug/gpio

Expected Output

root@phycore-am57xx-1:~# cat /sys/kernel/debug/gpio
gpiochip0: GPIOs 0-31, parent: platform/4ae10000.gpio, gpio-0-31:
gpio-26 (|home) in lo IRQ
gpio-27 (|menu) in lo IRQ
gpio-28 (|pcm-948:led1) out lo
gpio-29 (|pcm-948:led2) out lo

gpiochip1: GPIOs 32-63, parent: platform/48051000.gpio, gpio-32-63:
gpio-44 (|encoder@0) in lo IRQ
gpio-54 (|vbus) in hi IRQ

gpiochip2: GPIOs 64-95, parent: platform/48053000.gpio, gpio-64-95:
gpio-68 (|pcie-reset) out hi ACTIVE LOW
gpio-71 (|pcie-clk-oe) out hi

gpiochip3: GPIOs 96-127, parent: platform/48055000.gpio, gpio-96-127:

gpiochip4: GPIOs 128-159, parent: platform/48057000.gpio, gpio-128-159:

gpiochip5: GPIOs 160-191, parent: platform/48059000.gpio, gpio-160-191:
gpio-168 (|regulator-vtt) out hi
gpio-169 (|phycore:red) out lo
gpio-170 (|phycore:green) out hi

gpiochip6: GPIOs 192-223, parent: platform/4805b000.gpio, gpio-192-223:
gpio-199 (|id) in lo IRQ
gpio-205 (|wp) out hi

gpiochip7: GPIOs 224-255, parent: platform/4805d000.gpio, gpio-224-255:
gpio-251 (|cd) in lo IRQ ACTIVE LOW
gpio-252 (|wp) in lo

GPIO and gpiochip

	GPIO SOC Modules

	GPIO Hardware Signal

	Section

	gpiochip0

	GPIO1

	0-31

	gpiochip1

	GPIO7

	32-63

	gpiochip2

	GPIO8

	64-95

	gpiochip3

	GPIO2

	96-127

	gpiochip4

	GPIO3

	128-159

	gpiochip5

	GPIO4

	160-191

	gpiochip6

	GPIO5

	192-223

	gpiochip7

	GPIO6

	224-255

	Looking at the section “gpiochip0”, since it translates to GPIO1, you can see the first software GPIO signal is gpio-28 for GPIO1. By adding 0 and the hardware signal(GPIO1_28) together the proper software singal name can be found.

0+28 = 28

	Now you know that gpio-28 (software) is GPIO1_28 (hardware).

Software to Hardware

	In order to figure out which hardware GPIO signals are already allocated simply subtract the software GPIO singal from the GPIO bank starting section.

	Find the GPIO bank section by running the following command on the development kit.

Target (Linux)

cat /sys/kernel/debug/gpio

	The GPIO4 bank correlates gpiochip5 which starts at gpio-160. To find which hardware GPIO signal phycore:red corresponds to gpio-169, subtract gpio-169 from the start of the GPIO bank (gpio-160).

169-160 = 9

	Now you know that gpio-169 (software) is GPIO4_9 (hardware).

 I2C

I2C

The Inter-Integrated Circuit (I2C) interface is a two-wire, bidirectional serial bus that provides a simple and efficient method for data exchange among devices. The phyCORE-AM57x provides five independent I2C buses at the phyCORE connector directly from the processor. This guide will show you how to test the I2C interface on the phyCORE-AM57x development kit. To learn more information about the phyCORE-AM57x Inter-Integrated Circuit (I2C) interface, please see section 8.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Note

The AM57x processor supports up to 5x I2C interfaces. Only three of these are supported on the phyCORE-AM57x development kit by default but others can be enabled via pin multiplexing.

Available Interfaces

	Interface

	sysfs Path

	I2C1

	/dev/i2c-0

	I2C3

	/dev/i2c-2

	I2C4

	/dev/i2c-3

Requirements

	4x F/F Jumper Wire [https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_1_sspa?crid=3VVCWHE1TA0SX&keywords=Solderless%2BFlexible%2BBreadboard%2BJumper%2BWires%2BFemale%2Bfemale&qid=1704388205&sprefix=solderless%2Bflexible%2Bbreadboard%2Bjumper%2Bwires%2Bfemale%2Bfemale%2B%2Caps%2C132&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1]

	I2C device (Accelerometer [https://www.sparkfun.com/products/12589])

	Expansion Connector

	Contact Sales [https://www.phytec.com/contact/]

Using I2C1

	Power on the development kit and boot into Linux.

	List the available I2C devices. There will be a few devices that appear in /dev/ and each is a different I2C interface.

Target (Linux)

ls /dev/i2c*

Example Output

root@phycore-am57xx-1:~# ls /dev/i2c*
/dev/i2c-0 /dev/i2c-2 /dev/i2c-3

	List all the I2C busses in the system.

The i2c-tools package contains a heterogeneous set of I2C tools to interact with I2C slave devices from userspace. BSP images have i2c-tools packaged by default

Target (Linux)

 i2cdetect -l

Expected Output

root@phycore-am57xx-1:~# i2cdetect -l
i2c-3 i2c OMAP I2C adapter I2C adapter
i2c-2 i2c OMAP I2C adapter I2C adapter
i2c-0 i2c OMAP I2C adapter I2C adapter

	Use the “i2cdetect” command to scan the I2C1 bus for devices. This command outputs the address of all devices on the I2C1 bus.

The I2C1 (/dev/i2c-0) interface is heavily utilized on the phyCORE-AM57x development kit. Devices onboard the SOM such as the PMIC, EEPROM and RTC are connected on this bus.

Target (Linux)

i2cdetect -y -r 0

Expected Output

root@phycore-am57xx-1:~# i2cdetect -y -r 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- UU UU UU 5b -- -- -- --
60: -- -- -- -- -- -- -- -- UU -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Note

UU indicates that the device with that particular address is tied to a kernel driver and you will be unable to communicate with the device via i2c commands (i2cset and i2cget).

The detected interfaces should match with the devices connected to I2C1 on the development kit.

I2C1 Reserved Addresses

	Interface

	Address (7-bit)

	PMIC

	0x58

0x59

0x5A

0x5B

	EEPROM

	0x50

	RTC

	0x68

Interacting with I2C1

The I2C1 (/dev/i2c-0) interface is heavily utilized on the phyCORE-AM57x development kit. Devices onboard the SOM such as the PMIC, EEPROM and RTC are connected on this bus.

	Use i2cdetect from Linux to scan the bus for devices:

Target (Linux)

i2cdetect -y -r 0

	This command outputs the address of all devices on the I2C1 bus. You should see something similar to the below:

Example Output

root@am57xx-phycore-kit:~# i2cdetect -y -r 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- UU UU UU 5b -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Note

UU indicates that the address is connected to a driver. You will be unable to talk to this device via i2c commands i2cset and i2cget.

Connecting the Accelerometer

	Now ‘poweroff’ the development kit and connect up the accelerometer before booting the kit back into Linux.

Target (Linux)

poweroff

	Connect the PHYTEC Expansion Board (PCM-957) to the carrier board and then connect the sensor by following the circuit diagram.

[image: Sparkfun Accelerometer Wiring Diagram]
[image: Sparkfun Accelerometer Connected]

	If you run the same i2cdetect command you should be able to confirm that a new device has appeared on the I2C1 bus:

Target (Linux)

 i2cdetect -y -r 0

Example Output

root@am57xx-phycore-kit:~# i2cdetect -y -r 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- 1d -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- UU UU UU 5b -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Since the accelerometer was simply attached to the BUS without any knowledge of it having been provisioned into the Linux device tree the device address comes up as its true address 0x1d as opposed to ‘UU’. This means we can interact with it directly in userspace using the i2cget and i2cset utilities, check out the following userspace driver for bump detection!

Sensor Script

	Open a text editor to write a script:

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Target (Linux)

 vi ~/bumpDetect.sh

	Enter the following and save the file:

~/bumpDetect.sh

#!/bin/bash

echo Input Sparkfun RedBot-Accelerometer bus:
read -r bus
echo Input Sparkfun RedBot-Accelerometer address:
read -r addy

i2cset -y "$bus" "$addy" 0x2B 0x40 #Reset the accelerometer
i2cset -y "$bus" "$addy" 0x0E 0x02 #Set dynamic range to 8g from default 2g
i2cset -y "$bus" "$addy" 0x2A 0x05 #Enable the device

#Constantly check if there is any change in acceleration in the Z axis
state=$(i2cget -y "$bus" "$addy" 0x05)

while true; do
 temp=$(i2cget -y "$bus" "$addy" 0x05)
 if ["$state" != "$temp"];
 then
 echo Bump!
 usleep 200000
 state=$(i2cget -y "$bus" "$addy" 0x05)
 fi
done

	Change the permissions such that you can execute the script:

Target (Linux)

chmod +x ~/bumpDetect.sh

	Now run the script:

Target (Linux)

~/bumpDetect.sh

	When prompted, enter the bus you connected the device to (which was I2C1) and the address found earlier (the kernel representd this bus as /dev/i2c-0) Both must be given in hexidecimal form!

Example Usage

root@am57xx-phycore-kit:~# ~/bumpDetect.sh
Input Sparkfun RedBot-Accelerometer bus:
0x00
Input Sparkfun RedBot-Accelerometer address:
0x1d

	With the accelerometer resting on the table surface, try tapping the table surface!

The accelerometer is pretty sensitive so you should be able to tap the table anywhere, and very lightly, to get a bump to register (Note that the example is only polling the Z axis, so tapping the sides of the table will probably not register a bump).

	Press Ctrl + C to quit the process.

 SPI

SPI

The Serial Peripheral Interface (SPI) is a transmit/receive, master/slave synchronous serial bus. The phyCORE-AM57x SOM provides access to four SPI ports at the phyCORE-Connector. A few of these SPI interfaces are made available at the connectors but the majority have been muxed for other functionality, see the Release Notes for more information. This guide will show you how to test the SPI interface on the phyCORE-AM57x development kit carrier board via a loopback test with the PHYTEC expansion board. To learn more information about the phyCORE-AM57x SPI, please see section 42 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Requirements

	1x F/F Jumper Wire [https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_1_sspa?crid=3VVCWHE1TA0SX&keywords=Solderless%2BFlexible%2BBreadboard%2BJumper%2BWires%2BFemale%2Bfemale&qid=1704388205&sprefix=solderless%2Bflexible%2Bbreadboard%2Bjumper%2Bwires%2Bfemale%2Bfemale%2B%2Caps%2C132&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1]

	Expansion Connector

	Contact Sales [https://www.phytec.com/contact/]

Development Kit Setup

	Powered off the kit and remove the power supply.

	Connect the PHYTEC expansion board (PCM-957) to the carrier board at header X28.

[image: Expansion Connector Location]
[image: Expansion Board]

	Connect pins 4D and 5D on the expansion board using a F-F jumper cable.

These pins correspond to SPI1’s MISO and MOSI signals and by shorting them we can excercise a hardware loop back test.

[image: SPI Loopback Location]

Enabling Overlay & Script

	Power on the board and press any key to stop autoboot and enter U-Boot.

	Type the following commands to enable the device tree overlay:

Target (U-Boot)

 setenv overlays am57xx-phytec-pcm-948-x28-spidev.dtbo
 boot

Loop-back Test

	Initiate the loop-back test on the SPI1 interface (/dev/spidev1.0)

Target (Linux)

spidev_test -v -D /dev/spidev1.0

Expected Output

 spi mode: 0x0
 bits per word: 8
 max speed: 500000 Hz (500 KHz)
 TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|
 RX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|

If SPI communication is not functioning properly, only “00”s or “FF”s will be printed in the “rx data”.

This can be demonstrated by running the previous command again with the wire removed.

 UART

UART

The phyCORE-AM57x SoC has the capibility of supporting eight UART interfaces. The phyBOARD-AM57x delopment kit prodives access to three of these signals through interface connectors. By default, the phyCORE-AM57x development kit is configured to use UART3 (ttyS2 in the device tree) for a Linux console input and output. The UART3 signal is available through a RS232-USB connector (X18). PHYTEC recommends allocating UART3 for console access on custom designs. This guide will show you how to send serial data over the UART5 interface.

[image: UART Locations]

UART

	UART

	Connector

	Character Device File

	UART3

Default Linux Console

	X18 (RS232-USB)

	/dev/ttyS2

	UART5

	x17 (3-pin header)

	/dev/ttyS4

	UAR10

	X26 (Wifi header)

X28 (Expansion Header)

	/dev/ttyS

Requirements

	USB to RS-232 Serial Adapter [https://www.amazon.com/Adapter-Chipset%EF%BC%8CRS232-USB-Serial-Converter-Windows/dp/B0759HSLP1/ref=sr_1_1_sspa?hvadid=557588407367&hvdev=c&hvlocphy=9033314&hvnetw=g&hvqmt=e&hvrand=6761798776606774634&hvtargid=kwd-4990307659&hydadcr=18038_13447332&keywords=usb%2Bto%2Bserial%2Brs232%2Badapter&qid=1681511534&sr=8-1-spons&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEyNjEwUEMzNkZNQ1IzJmVuY3J5cHRlZElkPUEwNzk2ODY1MU1CV0hNRURHUEc1SiZlbmNyeXB0ZWRBZElkPUEwMzAzMzIzSldNTUNEWU1YRUU2JndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ&th=1]

	3x F/F Jumper Wire [https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_2_sspa?crid=18W6C4PQ0DDEV&keywords=male+female+jumper+wires&qid=1704499871&s=industrial&sprefix=male+female+jumper+wire%2Cindustrial%2C127&sr=1-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&psc=1]

Hardware Setup

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Connect the the RS232-USB to one side of the F/F jumper cables.

	Then connect the F/F jumpers to the 3-pin header X17.

[image: ../_images/pb-057948_uart-x17-pinout.png]
[image: ../_images/pb-057948_uart-x17-pin1.png]

	Open your Host system’s Device Manager and expand Ports (COM & LPT).

Note

Windows systems can press the Windows key, type “device manager” and press ENTER.

	Connect the USB end of the RS232-USB cable to your Host machine.

	Take note of any new device names that appear under “Ports”. You’ll need the COM port device number in the next steps.

[image: UART COM Port]

UART5 Terminal Setup

	Open a new terminal window. This guide will be using TeraTerm but other emulators like PuTTY will work as well.

[image: Open a New Terminal Session]

	Set the serial parameters: 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control.

[image: Setup Serial Port]
[image: Terminal Settings]

	Select a COM port that coresponds to the one USB to RS-232 serial adapter port.

UART5 Setting the Baud Rate

	In the terminal window connected to X18 UART3, the development kit default serial port, enter the following to set the communication rate for UART5:

Target (Linux)

stty -F /dev/ttyS4 115200

Sending a Message to UART5

	Now try sending a message to UART5 terminal (X17). In the X18 terminal, enter the following command:

Target (Linux)

echo You did it! > /dev/ttyS4

	Take a look at the UART5 terminal.

Expected Output (UART5 console)

You did it!

Note

If you have trouble receiving or sending messages to a Console Terminal, ensure that you have the correct COM port set and the terminal is configured for 8 bit data, no parity bits, 1 stop bit, and a baud rate of 115200.

Receiving a Message from UART5

	To receive messages from your host machine, set your Linux console to output any incoming data from the UART5 connection:

Target (Linux)

cat /dev/ttyS4

	Now send a message from the UART5 console to the Linux console. Type anything you want and then hit the “Enter” button.

	Enter Ctrl + C in the Linux console to stop waiting for incoming data.

 Fan

Fan

The phyCORE-AM57x Carrier Board provides fan connectivity via a 2-pin Hirose connector at X36. The fan is intended to be mounted directly to the processor heat sink for thermal management. The 5V power supplied to the X36 connector is regulated from the VDD_12V0 power rail through an LP3878-ADJ regulator at U12. The regulated 5V output is enabled by driving X_GPIO7_5 high. When X_GPIO7_5 is pulled low, the 5V supplied to the fan connector will be turned off. The default behavior of the phyCORE-AM57x is to have this fan turned on. To learn more information about the phyCORE-AM57x fan utilization, please see section 30 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: Fan Connector Location]

 GPIO

GPIO

The General-Purpose Input/Output interfaces provides pins that can be configured as either inputs or outputs. Many of the signals available at the phyCORE-Connector can be multiplexed as GPIOs. The phyCORE-AM57x SOM brings out a selection of GPIOs and you can access many of these signals through some pre-made LED/Button circuits and with the help of the PHYTEC Expansion board (PCM-957). This guide walks through the basic steps of toggling and reading the state of these IO interfaces. To learn more information about the phyCORE-AM57x GPIO interface, please see section 40 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: User LED and Expansion Connector Locations]

Using LEDs and Push Buttons

This section of the guide will walk through the use of the pre-made LED circuits populated directly on the carrier board and SOM. These outputs have been pre-configured in the device tree for use.

User LEDs

	LED

	Location

	Signal

	/sys/class/leds/phycore:red@

	SOM (D1)

	GPIO4_9

	/sys/class/leds/phycore:green@

	SOM (D2)

	GPIO4_10

	/sys/class/leds/pcm-948:led1@

	CB (LED1)

	X_GPIO1_28

	/sys/class/leds/pcm-948:led2@

	CB (LED2)

	X_GPIO1_29

Toggling the User LEDs

The development kit has two user-configurable LEDs. In the next section “GPIO Signal Naming” you’ll see that these GPIO signals are already allocated to names pcm-948:led1/2. This indicates that a driver has claimed these gpios, and this can be confirmed by checking the linux device tree. The driver is gpio-leds.

	Let’s take a look at the sysfs interface that the gpio-leds driver are located in.

Target (Linux)

ls /sys/class/leds/

Expected Output

root@phycore-am57xx-1:~# ls /sys/class/leds/
mmc0::@ mmc1::@ pcm-948:led1@ pcm-948:led2@ phycore:green@ phycore:red@

	Let’s first turn ON LED1 (it should be OFF by default):

Target (Linux)

echo 1 > /sys/class/leds/pcm-948\:led1/brightness

Note

When the gpio-leds driver is attached to a PWM enabled pin, the brightness file will actually control the physical brightness of the pin and allow you to write values from 0 to 255 to do so. In this case, GPIO1_28 is not PWM capable pin and thus 0 corresponds to the LED being OFF and any other value sets the LED to ON.

	Turn OFF the LED

Target (Linux)

echo 0 > /sys/class/leds/pcm-948\:led1/brightness

	We can also leverage the driver to do more interesting things with the LED. Let’s configure the GPIO as a Linux heartbeat for example:

Target (Linux)

echo "heartbeat" > /sys/class/leds/pcm-948\:led1/trigger

	The heartbeat trigger can be turned OFF like so:

Target (Linux)

echo "none" > /sys/class/leds/pcm-948\:led1/trigger

The other LED, pcm-948:led2, can be controlled in the same way.

Reading the User Buttons (S3/S4)

We can see in both the development kit schematic and in /sys/kernel/debug/gpio that GPIO1_26 is connected to the user button S1 and is represented in software as gpio-26 with the name “home” and the user button S2 and is represented in software as gpio-27 with the name “menu” . We can see in the device tree that these GPIO are assigned to the gpio-keys driver.

	We can poll the state of the input GPIO just by reading /sys/kernel/debug/gpio like we already did above:

Target (Linux)

cat /sys/kernel/debug/gpio | grep home

Target (Linux)

root@phycore-am57xx-1:~# cat /sys/kernel/debug/gpio | grep home
gpio-26 (|home) in lo IRQ

	Now try running that command again while holding down the S1 button:

Expected Output

root@phycore-am57xx-1:~# cat /sys/kernel/debug/gpio | grep home
gpio-26 (|home) in hi IRQ

We can see that the pin goes from “lo” to “hi” when the button is pressed.

	Another option for viewing button presses is to leverage the gpio-keys driver and the input events that it generates:

Target (Linux)

cat /dev/input/event0 | hexdump

With that above command running as an active process, try pushing the User buttons S1 and S2. You should see a large block of hexadecimal data printed to the screen for each button press.

Note

These blocks of data are input_event structures that identify the key code assigned to the GPIO (see the linux device tree), when the button press occurred, and the type of button press event that was generated (long press, single press, button release, etc). See Documentation/input/input.rst within the kernel source for more information.

	Enter Ctrl + C to end the process and resume control of the console.

Advanced Steps to Impress your Mom!

LED Blink

	To create a script that automatically blinks the LED, open a text editor:

Target (Linux)

vi ~/blink.sh

	Edit the contents of the new file to reflect the code below and save the file:

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

~/blink.sh

#!/bin/sh
echo 0 > /sys/class/leds/phycore:red/brightness
echo 0 > /sys/class/leds/phycore:green/brightness

for i in `seq 1 10`; do
echo 1 > /sys/class/leds/phycore:red/brightness
echo 0 > /sys/class/leds/phycore:green/brightness
sleep 1
echo 0 > /sys/class/leds/phycore:red/brightness
echo 1 > /sys/class/leds/phycore:green/brightness
sleep 1
done

	Make your file executable:

Target (Linux)

chmod +x ~/blink.sh

	Now run the script:

Target (Linux)

~/blink.sh

User Button via Expansion Board

This section of the guide will walk through the use of a user made Push Button populated directly onto the PHYTEC Expansion Board (PCM-957).

	With the phyCORE-AM57x powered off and with the power supply removed, hook up a through-hole push button to the pin 23C and to the supply rail at pin 51C. Use the following circuit diagram for reference:

[image: User Button Wiring Diagram]

Note

GPIO4_20 is an undefined signal in the device tree and therefore will default to its reset state, which internally pulls down the pin. Thus, we need to pull the signal high when the button is pressed.

	Once wired up, reconnect the power supply and boot into Linux.

	Use the following command to export the GPIO signal in sysfs:

Target (Linux)

echo 180 > /sys/class/gpio/export

	Set GPIO4_20 as an input:

Target (Linux)

echo in > /sys/class/gpio/gpio180/direction

	Lets try polling the state of the GPIO4_20 signal:

Target (Linux)

cat /sys/class/gpio/gpio180/value

Expected Output

root@phycore-am57xx-1:~# cat /sys/class/gpio/gpio180/value
0

	Now try polling the state of the button again while pressing and holding the push button we just wired up! You should see that the state of the signal went from 0 to a 1.

GPIO Signal Naming

The GPIO pin numbering of the phyCORE-AM57x schematic is represented differently from the device identifier used by the kernel. Therefore in GPIO hardware signal naming convention looks very different from the software GPIO naming convention. This section will walk through how to calcualte the GPIO signals and shoe how to identify which GPIO signals are in use on the developmeny kit.

Hardware to Software

	Using the development kit’s carrier board and SOM schematics the hardware GPIO signal GPIO1_28 (LED1) at SOM connector A52 pin.

	See which GPIO signals have been allocated by running the following command.

Target (Linux)

cat /sys/kernel/debug/gpio

Expected Output

root@phycore-am57xx-1:~# cat /sys/kernel/debug/gpio
gpiochip0: GPIOs 0-31, parent: platform/4ae10000.gpio, gpio-0-31:
gpio-26 (|home) in lo IRQ
gpio-27 (|menu) in lo IRQ
gpio-28 (|pcm-948:led1) out lo
gpio-29 (|pcm-948:led2) out lo

gpiochip1: GPIOs 32-63, parent: platform/48051000.gpio, gpio-32-63:
gpio-44 (|encoder@0) in lo IRQ
gpio-54 (|vbus) in hi IRQ

gpiochip2: GPIOs 64-95, parent: platform/48053000.gpio, gpio-64-95:
gpio-68 (|pcie-reset) out hi ACTIVE LOW
gpio-71 (|pcie-clk-oe) out hi

gpiochip3: GPIOs 96-127, parent: platform/48055000.gpio, gpio-96-127:

gpiochip4: GPIOs 128-159, parent: platform/48057000.gpio, gpio-128-159:

gpiochip5: GPIOs 160-191, parent: platform/48059000.gpio, gpio-160-191:
gpio-168 (|regulator-vtt) out hi
gpio-169 (|phycore:red) out lo
gpio-170 (|phycore:green) out hi

gpiochip6: GPIOs 192-223, parent: platform/4805b000.gpio, gpio-192-223:
gpio-199 (|id) in lo IRQ
gpio-205 (|wp) out hi

gpiochip7: GPIOs 224-255, parent: platform/4805d000.gpio, gpio-224-255:
gpio-251 (|cd) in lo IRQ ACTIVE LOW
gpio-252 (|wp) in lo

GPIO and gpiochip

	GPIO SOC Modules

	GPIO Hardware Signal

	Section

	gpiochip0

	GPIO1

	0-31

	gpiochip1

	GPIO7

	32-63

	gpiochip2

	GPIO8

	64-95

	gpiochip3

	GPIO2

	96-127

	gpiochip4

	GPIO3

	128-159

	gpiochip5

	GPIO4

	160-191

	gpiochip6

	GPIO5

	192-223

	gpiochip7

	GPIO6

	224-255

	Looking at the section “gpiochip0”, since it translates to GPIO1, you can see the first software GPIO signal is gpio-28 for GPIO1. By adding 0 and the hardware signal(GPIO1_28) together the proper software singal name can be found.

0+28 = 28

	Now you know that gpio-28 (software) is GPIO1_28 (hardware).

Software to Hardware

	In order to figure out which hardware GPIO signals are already allocated simply subtract the software GPIO singal from the GPIO bank starting section.

	Find the GPIO bank section by running the following command on the development kit.

Target (Linux)

cat /sys/kernel/debug/gpio

	The GPIO4 bank correlates gpiochip5 which starts at gpio-160. To find which hardware GPIO signal phycore:red corresponds to gpio-169, subtract gpio-169 from the start of the GPIO bank (gpio-160).

169-160 = 9

	Now you know that gpio-169 (software) is GPIO4_9 (hardware).

 HDMI

HDMI

The phyCORE-AM57x High-Definition Multimedia Interface is compliant with HDMI 1.4a, HDCP 1.4, and DVI 1.0. The HDMI signals are routed from the SOM through an ESD protection and current limiter IC at U25. The signals are then accessible through the Micro-HDMI connector at X24. This guide will walk through the basic validation of this interface. For more information on HDMI, please see section 26.1 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: HDMI Connector Location]

Requirements

	micro-HDMI Cable

	Monitor with an HDMI Port [https://www.amazon.com/HP-V223ve-21-5-inch-certified-Ergonomic/dp/B09GKZ71PJ/ref=sr_1_3?keywords=hdmi+monitor&qid=1663194539&sr=8-3]

	7” HDMI Display [https://www.amazon.com/HMTECH-Raspberry-Pi-Monitor-Non-Touch/dp/B09MFNLRQQ/] Optional

	Requires a micro USB 5V power cable and HDMI cable

Note

Be sure that you are not using a headless BSP image as this does not support the HDMI interface.

Setting Up HDMI

The primary display interface for the default BSP is the OLDI display. In order to utilize the HDMI interface we will need to disable the OLDI interface.

	Connect an HDMI compatible display/monitor to the AM57x Development Kit via a micro-HDMI Cable.

	Power on the board and press any key when prompted to stop in U-Boot.

	Enter the following command in U-Boot to set HDMI as the primary display interface:

Target (U-Boot)

setenv optargs omapdrm.displays=1,0
saveenv
boot

	As the board is booting, the PHYTEC logo with a loading bar should appear. Once loaded into Linux a “Multitouch” qtdemo should show on the screen.

Default Test Image

	Stop the qtdemo and weston demos.

Target (Linux)

systemctl stop phytec-qtdemo
systemctl stop weston.socket

	Run the following command to run the HDMI test.

Target (Linux)

fbtest

Expected Output

root@phycore-am57xx-1:~# fbtest
Using drawops cfb32 (32 bpp packed pixels)
Available visuals:
 Monochrome
 Grayscale 256
 Truecolor 8:8:8:0
Using visops truecolor
Running all tests
test001: PASSED
test002: PASSED
test004: PASSED
test006: PASSED
test008: PASSED
test009: PASSED

[image: phyCORE-AM57x HDMI Test 1]
[image: phyCORE-AM57x HDMI Test 2]
[image: phyCORE-AM57x HDMI Test 4]
[image: phyCORE-AM57x HDMI Test 6]
[image: phyCORE-AM57x HDMI Test 8]
[image: phyCORE-AM57x HDMI Test 9]

Reverting Back to Original Settings

	To revert back to the original settings, where the OLDI display interface is enabled, use the following command to first initiate a reboot before stopping in U-Boot:

Target (Linux)

reboot

	Enter these U-Boot commands to revert all settings back to their default values:

Target (U-Boot)

env default -f -a
saveenv
boot

 I2C

I2C

The Inter-Integrated Circuit (I2C) interface is a two-wire, bidirectional serial bus that provides a simple and efficient method for data exchange among devices. The phyCORE-AM57x provides five independent I2C buses at the phyCORE connector directly from the processor. This guide will show you how to test the I2C interface on the phyCORE-AM57x development kit. To learn more information about the phyCORE-AM57x Inter-Integrated Circuit (I2C) interface, please see section 8.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Note

The AM57x processor supports up to 5x I2C interfaces. Only three of these are supported on the phyCORE-AM57x development kit by default but others can be enabled via pin multiplexing.

Available Interfaces

	Interface

	sysfs Path

	I2C1

	/dev/i2c-0

	I2C3

	/dev/i2c-2

	I2C4

	/dev/i2c-3

Requirements

	4x F/F Jumper Wire [https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_1_sspa?crid=3VVCWHE1TA0SX&keywords=Solderless%2BFlexible%2BBreadboard%2BJumper%2BWires%2BFemale%2Bfemale&qid=1704388205&sprefix=solderless%2Bflexible%2Bbreadboard%2Bjumper%2Bwires%2Bfemale%2Bfemale%2B%2Caps%2C132&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1]

	I2C device (Accelerometer [https://www.sparkfun.com/products/12589])

	Expansion Connector

	Contact Sales [https://www.phytec.com/contact/]

Using I2C1

	Power on the development kit and boot into Linux.

	List the available I2C devices. There will be a few devices that appear in /dev/ and each is a different I2C interface.

Target (Linux)

ls /dev/i2c*

Example Output

root@phycore-am57xx-1:~# ls /dev/i2c*
/dev/i2c-0 /dev/i2c-2 /dev/i2c-3

	List all the I2C busses in the system.

The i2c-tools package contains a heterogeneous set of I2C tools to interact with I2C slave devices from userspace. BSP images have i2c-tools packaged by default

Target (Linux)

 i2cdetect -l

Expected Output

root@phycore-am57xx-1:~# i2cdetect -l
i2c-3 i2c OMAP I2C adapter I2C adapter
i2c-2 i2c OMAP I2C adapter I2C adapter
i2c-0 i2c OMAP I2C adapter I2C adapter

	Use the “i2cdetect” command to scan the I2C1 bus for devices. This command outputs the address of all devices on the I2C1 bus.

The I2C1 (/dev/i2c-0) interface is heavily utilized on the phyCORE-AM57x development kit. Devices onboard the SOM such as the PMIC, EEPROM and RTC are connected on this bus.

Target (Linux)

i2cdetect -y -r 0

Expected Output

root@phycore-am57xx-1:~# i2cdetect -y -r 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- UU UU UU 5b -- -- -- --
60: -- -- -- -- -- -- -- -- UU -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Note

UU indicates that the device with that particular address is tied to a kernel driver and you will be unable to communicate with the device via i2c commands (i2cset and i2cget).

The detected interfaces should match with the devices connected to I2C1 on the development kit.

I2C1 Reserved Addresses

	Interface

	Address (7-bit)

	PMIC

	0x58

0x59

0x5A

0x5B

	EEPROM

	0x50

	RTC

	0x68

Interacting with I2C1

The I2C1 (/dev/i2c-0) interface is heavily utilized on the phyCORE-AM57x development kit. Devices onboard the SOM such as the PMIC, EEPROM and RTC are connected on this bus.

	Use i2cdetect from Linux to scan the bus for devices:

Target (Linux)

i2cdetect -y -r 0

	This command outputs the address of all devices on the I2C1 bus. You should see something similar to the below:

Example Output

root@am57xx-phycore-kit:~# i2cdetect -y -r 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- UU UU UU 5b -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Note

UU indicates that the address is connected to a driver. You will be unable to talk to this device via i2c commands i2cset and i2cget.

Connecting the Accelerometer

	Now ‘poweroff’ the development kit and connect up the accelerometer before booting the kit back into Linux.

Target (Linux)

poweroff

	Connect the PHYTEC Expansion Board (PCM-957) to the carrier board and then connect the sensor by following the circuit diagram.

[image: Sparkfun Accelerometer Wiring Diagram]
[image: Sparkfun Accelerometer Connected]

	If you run the same i2cdetect command you should be able to confirm that a new device has appeared on the I2C1 bus:

Target (Linux)

 i2cdetect -y -r 0

Example Output

root@am57xx-phycore-kit:~# i2cdetect -y -r 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- 1d -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- UU UU UU 5b -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Since the accelerometer was simply attached to the BUS without any knowledge of it having been provisioned into the Linux device tree the device address comes up as its true address 0x1d as opposed to ‘UU’. This means we can interact with it directly in userspace using the i2cget and i2cset utilities, check out the following userspace driver for bump detection!

Sensor Script

	Open a text editor to write a script:

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Target (Linux)

 vi ~/bumpDetect.sh

	Enter the following and save the file:

~/bumpDetect.sh

#!/bin/bash

echo Input Sparkfun RedBot-Accelerometer bus:
read -r bus
echo Input Sparkfun RedBot-Accelerometer address:
read -r addy

i2cset -y "$bus" "$addy" 0x2B 0x40 #Reset the accelerometer
i2cset -y "$bus" "$addy" 0x0E 0x02 #Set dynamic range to 8g from default 2g
i2cset -y "$bus" "$addy" 0x2A 0x05 #Enable the device

#Constantly check if there is any change in acceleration in the Z axis
state=$(i2cget -y "$bus" "$addy" 0x05)

while true; do
 temp=$(i2cget -y "$bus" "$addy" 0x05)
 if ["$state" != "$temp"];
 then
 echo Bump!
 usleep 200000
 state=$(i2cget -y "$bus" "$addy" 0x05)
 fi
done

	Change the permissions such that you can execute the script:

Target (Linux)

chmod +x ~/bumpDetect.sh

	Now run the script:

Target (Linux)

~/bumpDetect.sh

	When prompted, enter the bus you connected the device to (which was I2C1) and the address found earlier (the kernel representd this bus as /dev/i2c-0) Both must be given in hexidecimal form!

Example Usage

root@am57xx-phycore-kit:~# ~/bumpDetect.sh
Input Sparkfun RedBot-Accelerometer bus:
0x00
Input Sparkfun RedBot-Accelerometer address:
0x1d

	With the accelerometer resting on the table surface, try tapping the table surface!

The accelerometer is pretty sensitive so you should be able to tap the table anywhere, and very lightly, to get a bump to register (Note that the example is only polling the Z axis, so tapping the sides of the table will probably not register a bump).

	Press Ctrl + C to quit the process.

 JTAG

JTAG

There is one JTAG interface on the phyCORE-AM57x that is accessible at the 20-pin header X10. This guide which will show you how to connect to and verify the onboard XDS200 USB JTAG debugger via a connection integrity test executed using TI’s Code Composer Studio IDE. To learn more information about the phyCORE-AM57x JTAG debug interface, please see section 24 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: JTAG Connector Location]

Requirements

	Spectrum Digital XDS200 USB JTAG Emulator [https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds200.html]

	Code Composer Studio IDE [https://www.ti.com/tool/CCSTUDIO]

	CCS12.4.0.00007

Hardware Setup

	Power off the kit and remove power.

	Connect the JTAG probe to the connector such that the red line on the ribbon cable aligns with pin 1 on the header.

[image: JTAG Connector Location]
[image: XDS200 Connection]

	Power on the kit.

Host Setup

	Download the latest CCSTUDIO installer for your Windows host machine.

Note

You could install this for your Linux VM however it is recommended to install this into the native OS of your Host Machine to avoid dealing with USB pass through related issues. PHYTEC generally runs native Windows machines and then hosts Linux build systems as a VM or on remote servers.

	As you work through the installer prompts:

	Select the Custom Installation Setup Type:

[image: ../_images/pb-057948_jtag-ccs-setuptype.png]

	When prompted to Select Components, enable Sitara AM3x, AM4x, AM5x and AM6x MPUs.

[image: ../_images/pb-057948_jtag-addsitarra.png]

	When prompted to Install debug probes, ensure that the Spectrum Digital Debug Probes and Boards option is selected (should be done by default but will depend on the version CCS being installed):

[image: ../_images/pb-057948_jtag-debuggers.png]

	Create a new workspace (it is recommended to choose a workspace directory without any spaces in the path, we at PHYTEC have experienced issues with the Sitara SDKs when it comes to their build scripts and spaces in paths).

Note

The following Workspace location is just an example, the default location for you will probably reflect the user you are logged in as.

[image: image]

	Once CCS has launched navigate to View Target Configurations.

	Right-click inside the Target Configurations pane and select New Target Configuration.

	Name the configuration AM57x_XDS200_USB.ccxml

[image: ../_images/pb-057948_jtag-newtarget.png]

	Set the connection to Texas Instruments XDS200 USB Debug Probe and the Device to AM5728x.

[image: Target Configuration File Settings]

	Hit the Save Configuration button.

	Now you can hit the Test Connection button. You should see a few tests run and complete successfully, including a reset of the processor and integrity scans.

[image: Target Configuration Test Output]

 PCIe

PCIe

The PCIe connectivity is accessible at the connector X27. The PCIe interface on the phyCORE-AM57x provides up to 5 Gbps data rate. All transmit and reference clock signals on the PCIe interface are AC coupled via 100nF capacitors. This guide will walk through a basic functional test of this PCIe Express interface. For more information on the PCIe interface on the phyCORE-AM57x, see section 8.5 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: PCIe Location]

Requirements

	CAT5e Ethernet cable (Included with kit)

	Intel Gigabit CT Desktop Adapter [https://www.intel.com/content/www/us/en/products/network-io/ethernet/gigabit-adapters/ct-desktop.html]

Hardware Setup

	With the kit powered off and power supply removed, connect the Network Adapter to the PCIe Slot at X27.

	Connect the ethernet cable to your DHCP enabled network and the Network Adapter.

[image: Network Connection Block Diagram]

	Power on the kit and boot into Linux.

Verifying PCIe

	Verify that the Network Adapter was registered:

Target (Linux)

lspci

Example Output

root@phycore-am57xx-1:~# lspci
00:00.0 PCI bridge: Texas Instruments Multicore DSP+ARM KeyStone II SOC (rev 01)
01:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection

	Verify that the ethernet interface was renamed from eth2 to enp1s0.

Target (Linux)

dmesg | grep eth2

Example Output

root@phycore-am57xx-1:~# dmesg | grep eth2
[82.399755] e1000e 0000:01:00.0 eth2: (PCI Express:2.5GT/s:Width x1) 68:05:ca:3e:a7:df
[82.399774] e1000e 0000:01:00.0 eth2: Intel(R) PRO/1000 Network Connection
[82.399789] e1000e 0000:01:00.0 eth2: MAC: 3, PHY: 8, PBA No: E46981-008
[85.884595] e1000e 0000:01:00.0 enp1s0: renamed from eth2

Setting up Ethernet

	Setup the ethernet interface and acquire an IP address:

Target (Linux)

ifconfig enp1s0 up && udhcpc -i enp1s0

Testing PCIe

	Now test your connection by pinging a known server:

Target (Linux)

ping -c 10 www.google.com

Expected Output

root@phycore-am57xx-1:~# ping -c 10 www.google.com
PING www.google.com (172.217.14.196): 56 data bytes
64 bytes from 172.217.14.196: seq=0 ttl=53 time=12.643 ms
64 bytes from 172.217.14.196: seq=1 ttl=53 time=12.390 ms
64 bytes from 172.217.14.196: seq=2 ttl=53 time=14.637 ms
64 bytes from 172.217.14.196: seq=3 ttl=53 time=12.188 ms
64 bytes from 172.217.14.196: seq=4 ttl=53 time=14.427 ms
64 bytes from 172.217.14.196: seq=5 ttl=53 time=19.137 ms
64 bytes from 172.217.14.196: seq=6 ttl=53 time=12.473 ms
64 bytes from 172.217.14.196: seq=7 ttl=53 time=12.020 ms
64 bytes from 172.217.14.196: seq=8 ttl=53 time=11.667 ms
64 bytes from 172.217.14.196: seq=9 ttl=53 time=13.194 ms

--- www.google.com ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 11.667/13.477/19.137 ms

 Power and Reset Buttons

Power and Reset Buttons

The phyCORE-AM57x development kit is provided a selection of buttons to perform power related functions. To learn more information about the phyCORE-AM57x button interfaces, please see sections 16 and 34 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: System Control Button Locations]

 Power LEDs

Power LEDs

The phyCORE-AM57x carrier board has five LEDs which indicate the presence of power on the various supply rails available. These LEDs are not user programmable and are present for hardware debugging purposes only.

[image: Power LED Locations]
[image: Power LED Close Up]
The table below lists the LEDs and information about their corresponding power rails.

Power Rail LED Indicators

	Reference Designator

	Description

	D5

	VDD_3V3 Power Rail Indicator

	The Texas Instruments TPS22965 load switch (U11) powers the VDD_3V3 supply rail from the VCC_3V3 supply rail.

	The VDD_3V3 supply rail is available at the Expansion Connector.

	D6

	VDD_5V0 Power Rail Indicator

	The Texas Instruments TPS22965 load switch (U8) powers the VDD_5V0 supply rail from the VCC_5V0 supply rail.

	The VDD_5V0 supply rail is available at the Expansion Connector.

	D10

	VDD_12V0 Power Rail Indicator

	A MOSFET (U2) powers the VDD_12V0 supply rail from the VCC_12V0 supply rail.

	The VDD_12V0 supply rail is available at the Expansion Connector.

	D22

	VCC_5V0 Power Rail Indicator

	The Texas Instruments TPS54531 switching regulator (U21) powers the VCC_5V0 supply rail from VIN_12V.

	The VCC_5V0 supply rail is used for powering the SOM via the signal name VCC_5V0_IN.

	D23

	VCC_3V3 Power Rail Indicator

	The Texas Instruments TPS54531 switching regulator (U29) powers the VCC_3V3 supply rail from VIN_12V.

	The VCC_3V3 supply rail is used for powering the SOM via the signal name VCC_3V3_IN.

 QSPI NOR Flash

QSPI NOR Flash

The phyCORE-AM57x SOM can incorporate a 16MB NOR Flash, serving either as volatile or non-volatile memory. Opting for an SPI Flash can obviate the necessity of installing NAND Flash or eMMC memory on the SOM. This approach is particularly beneficial for applications demanding a compact code footprint or utilizing a small Real-Time Operating System (RTOS). The NOR device is linked to the qspi1 interface.

This guide furnishes instructions on interfacing with the NOR Flash from Linux. For additional details regarding the phyCORE-AM57x QSPI NOR memory, please refer to section 6.5 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Note

The standard development kit offering does not include a SOM with the NOR Flash populated and the QSPI interface is disabled by default. See the Release Notes for more information. For further support, please visit PHYTEC’s Support Portal [http://support.phytec.com/].

Setup and Partition Information

	Reference the following kernel diff to help you modify the default BSP, the QSPI interface must be enabled.

Kernel Patch

diff --git a/arch/arm/boot/dts/am5728-pcm-057-40300111i.dtsi b/arch/arm/boot/dts/am5728-pcm-057-40300111i.dtsi
index 2fef05af1043..64cab5ac7169 100644
--- a/arch/arm/boot/dts/am5728-pcm-057-40300111i.dtsi
+++ b/arch/arm/boot/dts/am5728-pcm-057-40300111i.dtsi
@@ -28,15 +28,15 @@
};

&qspi {
- status = "disabled";
+ status = "okay";
};

&qspi_nor {
- status = "disabled";
+ status = "okay";
};

&qspi_nor_cs0 {
- status = "disabled";
+ status = "okay";
};

&i2c_rtc {

	In order to apply the changes, referred to by the diff above, to your local kernel source first follow the Build the BSP guide and then reference the Modify The BSP guide.

	Once you have a updated device tree blob, copy this to your bootable SD Card:

Target (Linux)

cd ~/Downloads
cp am5728-phycore-kit-41300111i-NOR.dtb /media/<user>/rootfs/boot/

	Safely remove the SD Card from your Host Machine.

	Configure the development kit to boot from SD Card. Reference the SD Card guide for more information.

	Insert the SD Card into the phyCORE-AM57x development kit and power it on.

	Stop in U-Boot when prompted.

	Enter the following in U-Boot to specify which device tree will be used during Linux bring-up:

Target (U-Boot)

setenv board_name undefined
setenv fdtfile am5728-phycore-kit-41300111i-NOR.dtb
saveenv
boot

Tip

It is necessary to change the board_name variable to “undefined” so that U-Boot doesn’t automatically source the original device tree with QSPI disabled. For more information, see the Configuring the Bootloader guide.

	Lets take a look at the flash memory to see what software defined partitions are available:

Target (Linux)

mtdinfo -a

Example Output

root@am57xx-phycore-kit:~# mtdinfo -a
Count of MTD devices: 7
Present MTD devices: mtd0, mtd1, mtd2, mtd3, mtd4, mtd5, mtd6
Sysfs interface supported: yes

mtd0
Name: QSPI.SPL
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 4 (262144 bytes, 256.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false
Device is writable: true

mtd1
Name: QSPI.u-boot
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 16 (1048576 bytes, 1024.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:2
Bad blocks are allowed: false
Device is writable: true

mtd2
Name: QSPI.u-boot-spl-os
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 8 (524288 bytes, 512.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:4
Bad blocks are allowed: false
Device is writable: true

mtd3
Name: QSPI.u-boot-env
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 1 (65536 bytes, 64.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:6
Bad blocks are allowed: false
Device is writable: true

mtd4
Name: QSPI.u-boot-env.backup1
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 1 (65536 bytes, 64.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:8
Bad blocks are allowed: false
Device is writable: true

mtd5
Name: QSPI.kernel
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 128 (8388608 bytes, 8.0 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:10
Bad blocks are allowed: false
Device is writable: true

mtd6
Name: QSPI.file-system
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 98 (6422528 bytes, 6.1 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:12
Bad blocks are allowed: false
Device is writable: true

We can see that this device tree defines 7 partitions for our NOR Flash.

Write to QSPI

	Create a file that will fit into a partition (we are going to use the last partition, mtd6):

Target (Linux)

dd if=/dev/urandom of=/tmp/test.dat bs=64k count=98

Note that the size of a partition is a multiple of the erase block size!

	Write the file to the partition:

Target (Linux)

flashcp -v /tmp/test.dat /dev/mtd6

Example Output

root@am57xx-phycore-kit:~# dd if=/dev/urandom of=/tmp/test.dat bs=64k count=98
98+0 records in
98+0 records out
root@am57xx-phycore-kit:~# flashcp -v /tmp/test.dat /dev/mtd6
Erasing blocks: 98/98 (100%)
Writing data: 6272k/6272k (100%)
Verifying data: 6272k/6272k (100%)

Read from QSPI

	Read back the file we just wrote:

Target (Linux)

dd if=/dev/mtd6 of=/tmp/qspi_read.dat bs=64k count=98

	Lets compare the two files to ensure that what was read is the same as what was written:

Target (Linux)

md5sum /tmp/qspi_read.dat && md5sum /tmp/test.dat

Example Output

root@am57xx-phycore-kit:~# dd if=/dev/mtd6 of=/tmp/qspi_read.dat bs=64k count=98
98+0 records in
98+0 records out
root@am57xx-phycore-kit:~# md5sum /tmp/qspi_read.dat && md5sum /tmp/test.dat
dd83dcf5d8b7cbbfebdf012381e42f7a /tmp/qspi_read.dat
dd83dcf5d8b7cbbfebdf012381e42f7a /tmp/test.dat

Reverting back to the Original Device Tree

	Reset the board with the following:

Target (Linux)

reboot

	Stop in U-Boot when prompted.

	Return all environment variables to their defaults:

Target (U-Boot)

env default -f -a
saveenv
boot

 RTC

RTC

The Real Time Clock (RTC) on the phyCORE-AM57x serves the basic purpose of keeping time of day, as well as providing tamper proofing for digital rights management and waking up the rest of the chip from a power down state. The RTC can keep track of the year, month, date, weekday, hour, minute, and seconds and has timer, alarm, and external event input functionality. This guide will show you how to use RTC on the phyCORE-AM57x development kit to verify functionality when power is lost. To learn more information about the phyCORE-AM57x RTC interface, please see section 4 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Available RTCs

	RTC

	Description

	rtc0

	External RTC populated on the SOM at U19

	rtc1

	Internal RTC for the AM57x SoC

	rtc2

	PMIC rtc populated on the SOM at U3

Accessing RTC

	With your kit powered on and booted into Linux, the first thing to do is to check the name of the RTC device we will be using.

Target (Linux)

cat /sys/class/rtc/rtc0/name

Expected Output

rtc-m41t80 0-0068

Note

If the kit is not showing rtc0, the EEPROM configuration could be incorrect and need to be update. See the Using the PHYTEC EEPROM Flashtool guide for more information.

	Use the following command to set the system time (this is an arbitrary time, but note that you have to use a time later than the build date of the kernel).

Target (Linux)

date 071916142022

Tip

The argument in the above command broken down is:
07-19 16:14 2022
date time year

Setting the Time

	Assign the system time to the hardware clock:

Target (Linux)

hwclock -w -f /dev/rtc0

	Read back the time to ensure it was set properly:

Target (Linux)

hwclock -r -f /dev/rtc0

Verifying RTC

	Now poweroff the kit and remove the power supply! Powering off the kit should be done with this command:

Target (Linux)

poweroff

	Wait about a minute or so before powering the kit back on and booting into Linux.

	Once booted into Linux, use this command to check the time. You should see that the clock was advanced accurately even when the board was turned off.

Target (Linux)

hwclock -r -f /dev/rtc0

 SATA

SATA

The phyCORE-AM57x development kit provides one SATA interface to the Molex data connector at X11 and the power connector at X12. Note that the SATA has a max data rate of 3Gbps. This guide will walk through the basic usage of this interface. For more information on the SATA interface on the phyCORE-AM57x, please see section 8.4 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: SATA Connector Location]

Requirements

	A SATA 22pin Serial ATA Data and Power Combo Cable [https://www.amazon.com/WonderfulDirect-22pin-Serial-Power-SATA22Pin/dp/B01FPCA480?th=1]

	Hard Drive with SATA Connection

Hardware Setup

	Power off and remove power from the phyCORE-AM57x development kit.

	Connect the SATA Mass Storage device to the connectors X11 and X12.

[image: Hard Drive Connected]

	Reconnect the power supply and boot into Linux.

	Check that the SATA storage device was configured correctly:

Target (Linux)

dmesg | grep -i "scsi"

Expected Output

root@phycore-am57xx-1:~# dmesg | grep -i "scsi"
[3.571014] SCSI subsystem initialized
[6.035046] scsi host0: ahci
[6.663644] scsi 0:0:0:0: Direct-Access ATA ADATA SX900 1 PQ: 0 ANSI: 5
[6.729211] sd 0:0:0:0: [sda] Attached SCSI disk

Note

Notice in the above example output that the SATA drive was automatically mounted to the device sda. Take note of the device your drive was assigned to, as you will need to specify this correctly in the following steps by replacing <x> (in the example above, as the SATA drive was attached to the device sda, we would replace <x> in the following command with ‘a’).

Testing SATA

	Create a random file and copy it to the SATA drive.

Target (Linux)

dd if=/dev/urandom of=/root/test.dat bs=1M count=2
cp /root/test.dat /dev/sd<x>1/test_w.dat

	Copy the file back from the SATA drive to the root filesystem on the SD card.

Target (Linux)

cp /dev/sd<x>1/test_w.dat /root/test_r.dat

	Verify that the files were not corrupted. The following command will generate 3 hashes that uniquely identify each file. The hashes should be identical.

Target (Linux)

md5sum /root/test.dat && md5sum /dev/sd<x>1/test_w.dat && md5sum /root/test_r.dat

	Now remove the files that were generated:

Target (Linux)

rm /root/test.dat && rm /dev/sd<x>1/test_w.dat && rm /root/test_r.dat

 SD Card

SD Card

The SD card interface can be used as a boot device or plug-and-play external media. This guide will walk through reading and writing to the phyCORE-AM57x development kit’s SD card. For information on how to boot the development kit from SD card see the guide SD Card. More information on the SD card, please section 7 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Note

In order to make use of the SD card slot on the carrier board as a removable data storage device, your kit must first be booting from eMMC to make this slot available. See the eMMC guide.

Requirements

	SDHC SD card, at least 4GB (Included in development kit)

	SD card reader (operational under Linux) (Only for Transfering Media from Host)

	Bootable eMMC

	See the eMMC guide on how to boot from eMMC.

Transfering Media on Target

This portion of the guide will show how to read and write files with the SD card interface from the development kit.

Mounting the SD Card

	Create a temporary directory to mount your desired SD card partition:

Target (Linux)

mkdir ~/temp

	Mount the partition. You will need to create new directories if you want to mount more than one partition on the card to the system.

Target (Linux)

mount /dev/mmcblk0p1 ~/temp

Note

eMMC uses the partition /dev/mmcblk1*. While the SD card uses /dev/mmcblk0*.

	See the contents of the SD card.

Target (Linux)

ls ~/temp

Write to the SD Card

	Create a text file and copy (cp) the file to the SD card.

Target (Linux)

echo "SD card Test" > sdcard.txt
cp sdcard.txt temp/sdcard.txt

	Verify that the file wasn’t corrupted with md5sum. Both the hashes should match.

Target (Linux)

md5sum sdcard.txt temp/sdcard.txt

Expected Output

root@phycore-am57xx-1:~# md5sum sdcard.txt temp/sdcard.txt
01c82790018de260b8f61b370b889931 sdcard.txt
01c82790018de260b8f61b370b889931 temp/sdcard.txt

Read from the SD Card

	Copy the file from the SD card to the root directory

Target (Linux)

cp temp/sdcard.txt ~/read-sd.txt

	Verify that the file wasn’t corrupted with md5sum. Both the hashes should match.

Target (Linux)

md5sum temp/sdcard.txt read-sd.txt

Expected Output

root@phycore-am57xx-1:~# md5sum temp/sdcard.txt ~/read-sd.txt
01c82790018de260b8f61b370b889931 temp/sdcard.txt
01c82790018de260b8f61b370b889931 /root/read-sd.txt

Unmounting the SD Card

	Make sure you umount the SD card before unplugging the device from the kit.

Target (Linux)

umount ~/temp

Seeing SD card media on Host

Linux Host Machine

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Insert the SD card into the reader which is connected to your Linux Host machine.

	Two USB partitions should appear. Double click both.

	One of these should be the root filesystem which will be labeled ‘/boot’

	In the ‘/boot’ parition you should see the file sdcard.txt

[image: ../_images/pb-057948_sd-media-linux-drives.png]
[image: ../_images/pb-057948_sd-media-linux.png]

Windows Host Machine

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Insert the SD card into the reader which is connected to your Host machine.

	A File Explorer window should appear on your screen showing the SD card boot parition contents.

[image: ../_images/pb-057948_sd-media-windows.png]

Transfering Media from Host

Media can be transferred to the boot parition from either a Windows or Linux Host machine. This is possible due to this partition being formatted as a vfat. The root filesystem (/root) can only be access in a Linux Host machine as it is formatted as a ext4.

Linux Host Machine

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Insert the SD card into the reader which is connected to your Linux Host machine.

	Two USB partitions should appear. Double click both.

	Move or copy media to either partition. This example is transferring files to the root filesystem.

While it is possible to drag and drop files into the partitions, it is suggested to move files via terminal commands to avoid file corruption.

Host (Linux)

cp <path to files you want to transfer> /media/<user>/root/ && sync

	Close partition windows and eject SD card.

	Insert the SD card back into powered off the development kit.

	Supply power and boot up kit.

	Mount the partition. You will need to create new directories if you want to mount more than one partition on the card to the system.

Target (Linux)

mount /dev/mmcblk0p1 ~/temp

	After the SD card is mounted you can navigate through the directories just like you normally would in Linux. Verify that the transferred files are present.

Target (Linux)

ls ~/temp

Windows Host Machine

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Insert the SD card into the reader which is connected to your Host machine.

	A File Explorer window should appear on your screen showing the SD card boot parition.

	While it is possible to drag and drop files into the partitions, it is suggested to move files via Windows Command Prompt Terminal tool to avoid file corruption.

Note

Access the Windows Command Prompt Tool by typing “cmd” into the Windows search bar.

Host (Windows)

copy <path to files you want to transfer> <path to boot partition>

Increasing the Root Filesystem

The SD Card is formatted with a minimal root filesystem size by default and in order to transfer larger files it may become necessary to increase its size to take advantage of the full size of the SD Card. A Linux Host machine is necessary for this action.

	Increase the root filesystem partition of the SD card.

	Run the following command without the SD card connected to the host machine.

Host (Ubuntu)

ls /dev/sd*

	Connect the bootable SD card to your Ubuntu host machine.

	Run the following command with the SD card connected to the host machine.

Host (Ubuntu)

ls /dev/sd*

The SD card device name is of the form /dev/sd[a-z] in Ubuntu and the letter identifier along with any partitions (signified by the numbers following the letter) on the SD card are enumerated upon connection to the host machine. Look at the second output of the command and look for new devices that appeared there, the new device will correspond to the SD card. Remember the /dev/sdX identifier corresponding to your SD card as you will need to use this in the following step.

Be confident you have the correct */dev/sdX* device identified for your SD card before proceeding. Specifying the incorrect disk using the ‘fdisk’ utility in the steps below can potentially destroy your Virtual Machine and will require you to set it back up again from scratch.

	It is best to first backup the SD card to a file just in case something goes terribly wrong and you end up losing its contents:

Host (Ubuntu)

umount /dev/sdX* #unmount the entire SD Card, not just any single partition
sudo dd if=/dev/sdX of=~/backup.sdcard bs=1M conv=fsync && sync

	Use the fdisk utility and provided command sequence to create a new, larger root filesystem partition in the SD card’s partition table:

Host (Ubuntu)

sudo fdisk /dev/sdX

fdisk is an interactive utility, use the following command sequence
p (print the partition table and note the starting sector of the 2nd partition, call this START2. START2=196608 using the pre-built software)
d (delete a partition)
2 (select the root filesystem)
n (create a new partition)
p (make it a primary partition)
2 (make it the second partition)
START2 (specify the same starting sector for the 2nd partition as before)
ENTER (just hit ENTER to use the default size, which will automatically use up the remaining space on the SD Card)
w (write the changes)

	Disconnect and reconnect the SD card from the host machine at this point to ensure the new partition table is being picked up by the kernel.

	Finally, grow the root filesystem to take up the entire space in the partition:

Host (Ubuntu)

sudo resize2fs /dev/sdX2

	Drag and drop the file to the rootfs partition of the SD card using the GUI.

	In order to copy files to the SD card using the terminal, this can be done with the standard ‘cp’ (copy) command. See the above section “Transfering Media from Target” for more information.

	The next time you boot your phyCORE-AM57x into Linux, using the same SD Card, your file should be present in the filesystem.

 SPI

SPI

The Serial Peripheral Interface (SPI) is a transmit/receive, master/slave synchronous serial bus. The phyCORE-AM57x SOM provides access to four SPI ports at the phyCORE-Connector. A few of these SPI interfaces are made available at the connectors but the majority have been muxed for other functionality, see the Release Notes for more information. This guide will show you how to test the SPI interface on the phyCORE-AM57x development kit carrier board via a loopback test with the PHYTEC expansion board. To learn more information about the phyCORE-AM57x SPI, please see section 42 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Requirements

	1x F/F Jumper Wire [https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_1_sspa?crid=3VVCWHE1TA0SX&keywords=Solderless%2BFlexible%2BBreadboard%2BJumper%2BWires%2BFemale%2Bfemale&qid=1704388205&sprefix=solderless%2Bflexible%2Bbreadboard%2Bjumper%2Bwires%2Bfemale%2Bfemale%2B%2Caps%2C132&sr=8-1-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1]

	Expansion Connector

	Contact Sales [https://www.phytec.com/contact/]

Development Kit Setup

	Powered off the kit and remove the power supply.

	Connect the PHYTEC expansion board (PCM-957) to the carrier board at header X28.

[image: Expansion Connector Location]
[image: Expansion Board]

	Connect pins 4D and 5D on the expansion board using a F-F jumper cable.

These pins correspond to SPI1’s MISO and MOSI signals and by shorting them we can excercise a hardware loop back test.

[image: SPI Loopback Location]

Enabling Overlay & Script

	Power on the board and press any key to stop autoboot and enter U-Boot.

	Type the following commands to enable the device tree overlay:

Target (U-Boot)

 setenv overlays am57xx-phytec-pcm-948-x28-spidev.dtbo
 boot

Loop-back Test

	Initiate the loop-back test on the SPI1 interface (/dev/spidev1.0)

Target (Linux)

spidev_test -v -D /dev/spidev1.0

Expected Output

 spi mode: 0x0
 bits per word: 8
 max speed: 500000 Hz (500 KHz)
 TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|
 RX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F0 0D |......@.........................|

If SPI communication is not functioning properly, only “00”s or “FF”s will be printed in the “rx data”.

This can be demonstrated by running the previous command again with the wire removed.

 Thermal Zones

Thermal Zones

Thermal management is necessary to ensure proper operation of the phyCORE-AM57x SOM, especially when integrated inside an enclosure. This guide will show you how to read the junction temperature of the processor on the phyCORE-AM57x SOM. The development kit is shipped with a heat sink installed to keep the processor below the set trip points and within specified operating temperature. To learn more information about the phyCORE-AM57x thermal management, please see section 30 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Reading the Temperature

	The TI AM57x processor has 5 physical locations where the temperature can be monitored (thermal zones). Each zone can be accessed in the following sysfs directories.

Thermal Zones

	Sysfs Paths

	/sys/class/thermal/thermal_zone0

	/sys/class/thermal/thermal_zone1

	/sys/class/thermal/thermal_zone2

	/sys/class/thermal/thermal_zone3

	/sys/class/thermal/thermal_zone4

	The below command can be used to output the temperature of thermal zone 0. This same command can be used for zones 1 through 4.

Target (Linux)

cat /sys/class/thermal/thermal_zone0/temp

	This output translates to 65.4°C:

Example Output

65400

Temperature Trip Points

Each thermal zone includes trip points. You can set the trip points to a temperature that will trigger an event, such as turning on a fan for active cooling. You can also build in a critical trip point; if this temperature is reached, Linux will automatically shutdown the system for protection of the processor.

Thermal Trip Points

	Trip Point Type

	Description

	Passive

	Passive cooling: Mitigate heat by scaling down performance without active cooling.

	Active

	Active cooling: Implement more aggressive cooling methods to prevent the system from reaching critical temperatures.

	Hot

	Reaching operating threshold: Signals a state where the system is getting warm but hasn’t reached critical levels yet.

	Critical

	Exceeding critical threshold: Protect the hardware from potential damage due to extreme temperatures by forcing shutdown.

Default Thermal Zone Trip Points

	Thermal Zone

	Trip Point Number

	Temperature

	Hysteresis

	Type

	thermal_zone0

	trip_point_0

trip_point_1

	90°C

105°C

	2°C

2°C

	Passive

Critical

	thermal_zone1

	trip_point_0

	105°C

	2°C

	Critical

	thermal_zone2

	trip_point_0

	105°C

	2°C

	Critical

	thermal_zone3

	trip_point_0

	105°C

	2°C

	Critical

	thermal_zone4

	trip_point_0

	105°C

	2°C

	Critical

Hysteresis refers to a temperature margin before taking corrective actions, such as adjusting cooling mechanisms. Instead of reacting immediately when a certain temperature threshold is crossed, a hysteresis value ensures that the system doesn’t oscillate rapidly between different states due to small temperature fluctuations.

	To view the type of trip points and the trip point temperatures of thermal zone 0 trip point 1, run the following command:

Target (Linux)

cat /sys/class/thermal/thermal_zone0/trip_point_1*

Expected Output

2000
105000
critical

The critical trip point which will cause the system to shutdown will be reached when the temperature reaches 105C and alarm when the temperature reaches 103C.

 UART

UART

The phyCORE-AM57x SoC has the capibility of supporting eight UART interfaces. The phyBOARD-AM57x delopment kit prodives access to three of these signals through interface connectors. By default, the phyCORE-AM57x development kit is configured to use UART3 (ttyS2 in the device tree) for a Linux console input and output. The UART3 signal is available through a RS232-USB connector (X18). PHYTEC recommends allocating UART3 for console access on custom designs. This guide will show you how to send serial data over the UART5 interface.

[image: UART Locations]

UART

	UART

	Connector

	Character Device File

	UART3

Default Linux Console

	X18 (RS232-USB)

	/dev/ttyS2

	UART5

	x17 (3-pin header)

	/dev/ttyS4

	UAR10

	X26 (Wifi header)

X28 (Expansion Header)

	/dev/ttyS

Requirements

	USB to RS-232 Serial Adapter [https://www.amazon.com/Adapter-Chipset%EF%BC%8CRS232-USB-Serial-Converter-Windows/dp/B0759HSLP1/ref=sr_1_1_sspa?hvadid=557588407367&hvdev=c&hvlocphy=9033314&hvnetw=g&hvqmt=e&hvrand=6761798776606774634&hvtargid=kwd-4990307659&hydadcr=18038_13447332&keywords=usb%2Bto%2Bserial%2Brs232%2Badapter&qid=1681511534&sr=8-1-spons&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEyNjEwUEMzNkZNQ1IzJmVuY3J5cHRlZElkPUEwNzk2ODY1MU1CV0hNRURHUEc1SiZlbmNyeXB0ZWRBZElkPUEwMzAzMzIzSldNTUNEWU1YRUU2JndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ&th=1]

	3x F/F Jumper Wire [https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_2_sspa?crid=18W6C4PQ0DDEV&keywords=male+female+jumper+wires&qid=1704499871&s=industrial&sprefix=male+female+jumper+wire%2Cindustrial%2C127&sr=1-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&psc=1]

Hardware Setup

	Power off and remove the power supply from the development kit.

Target (Linux)

poweroff

	Connect the the RS232-USB to one side of the F/F jumper cables.

	Then connect the F/F jumpers to the 3-pin header X17.

[image: ../_images/pb-057948_uart-x17-pinout.png]
[image: ../_images/pb-057948_uart-x17-pin1.png]

	Open your Host system’s Device Manager and expand Ports (COM & LPT).

Note

Windows systems can press the Windows key, type “device manager” and press ENTER.

	Connect the USB end of the RS232-USB cable to your Host machine.

	Take note of any new device names that appear under “Ports”. You’ll need the COM port device number in the next steps.

[image: UART COM Port]

UART5 Terminal Setup

	Open a new terminal window. This guide will be using TeraTerm but other emulators like PuTTY will work as well.

[image: Open a New Terminal Session]

	Set the serial parameters: 115200 Baud, 8 bit data, no parity bits, 1 stop bit and no flow control.

[image: Setup Serial Port]
[image: Terminal Settings]

	Select a COM port that coresponds to the one USB to RS-232 serial adapter port.

UART5 Setting the Baud Rate

	In the terminal window connected to X18 UART3, the development kit default serial port, enter the following to set the communication rate for UART5:

Target (Linux)

stty -F /dev/ttyS4 115200

Sending a Message to UART5

	Now try sending a message to UART5 terminal (X17). In the X18 terminal, enter the following command:

Target (Linux)

echo You did it! > /dev/ttyS4

	Take a look at the UART5 terminal.

Expected Output (UART5 console)

You did it!

Note

If you have trouble receiving or sending messages to a Console Terminal, ensure that you have the correct COM port set and the terminal is configured for 8 bit data, no parity bits, 1 stop bit, and a baud rate of 115200.

Receiving a Message from UART5

	To receive messages from your host machine, set your Linux console to output any incoming data from the UART5 connection:

Target (Linux)

cat /dev/ttyS4

	Now send a message from the UART5 console to the Linux console. Type anything you want and then hit the “Enter” button.

	Enter Ctrl + C in the Linux console to stop waiting for incoming data.

 USB

USB

The Universal Serial Bus (USB) can be utilized for many functions on the development kit, including external media. The phyCORE-AM57x development kit provides one USB 2.0 Dual-Role Devices (DRD) subsystems via a USB mini connector (X9), a USB3.0 (X30) and a USB2.0 (X19). This guide will walk you through the basic use of the USB interface. To learn more information about the phyCORE-AM57x USB interface, please see section 8.1 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

USB Locations

	Type

	Header Location

	Speed

	Bus

	USB A

	X30

	3.0

	001

	USB Mini

	X9

	2.0

	002/004

	USB A

	X19

	2.0

	003

[image: USB Locations]

Note

The USB2.0 port at X19 and the USB Mini connector at X9 share signals and are therefore not functional at the same time. See the following bullets for configuring your hardware to enable your desired USB port. It is critical that jumpers are removed/installed only when the AM57x is completely powered off with the power supply removed.

	In order to enable the USB2.0 port at X19, close the jumpers JP3, JP6, and JP10.

	In order to enable the Mini-B USB connector at X9, open the jumpers JP3, JP6, and JP10.

[image: phyCORE-AM57x Development Kit USB Jumper Locations]

Requirements

	USB Storage Device [https://www.amazon.com/SanDisk-Ultra-Drive-Type-C-Flash/dp/B07YYJ63VF/ref=asc_df_B07YYJ63VF/?tag=&linkCode=df0&hvadid=416944208773&hvpos=&hvnetw=g&hvrand=10122061217681121613&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9033314&hvtargid=pla-858626018619&ref=&adgrpid=99659216531&th=1]

Verifying USB Interface

	With the phyCORE-AM57x development kit booted into Linux, verify that there are 4 USB devices.

Target (Linux)

lsusb

Expected Output

root@phycore-am57xx-1:~# lsusb
Bus 004 Device 001: ID 1d6b:0003
Bus 003 Device 001: ID 1d6b:0002
Bus 002 Device 001: ID 1d6b:0003
Bus 001 Device 001: ID 1d6b:0002

	Insert a USB device into X9.

Expected Output

root@phycore-am57xx-1:~# [32.154693] usb 3-1: new high-speed USB device number 2 using xhci-hcd
[32.336120] usb 3-1: New USB device found, idVendor=090c, idProduct=1000, bcdDevice=11.00
[32.344360] usb 3-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[32.352355] usb 3-1: Product: USB Flash Disk
[32.356689] usb 3-1: Manufacturer: General
[32.360839] usb 3-1: SerialNumber: 04NO3BEZ826XRN7H
[32.384979] usb-storage 3-1:1.0: USB Mass Storage device detected
[32.392700] scsi host1: usb-storage 3-1:1.0
[32.398284] usbcore: registered new interface driver usb-storage
[32.407379] usbcore: registered new interface driver uas
[33.696716] scsi 1:0:0:0: Direct-Access General USB Flash Disk 1100 PQ: 0 ANSI: 4
[33.706268] sd 1:0:0:0: [sda] 31506432 512-byte logical blocks: (16.1 GB/15.0 GiB)
[33.717529] sd 1:0:0:0: [sda] Write Protect is off
[33.726043] sd 1:0:0:0: [sda] No Caching mode page found
[33.731384] sd 1:0:0:0: [sda] Assuming drive cache: write through
[33.808105] sda: sda1
[33.812774] sd 1:0:0:0: [sda] Attached SCSI removable disk
[34.192993] cryptd: max_cpu_qlen set to 1000

	Verify that the USB was properly recongnized by development kit.

Target (Linux)

lsusb

Expected Output

root@phycore-am57xx-1:~# lsusb
Bus 004 Device 001: ID 1d6b:0003
Bus 003 Device 002: ID 090c:1000 General USB Flash Disk
Bus 003 Device 001: ID 1d6b:0002
Bus 002 Device 001: ID 1d6b:0003
Bus 001 Device 001: ID 1d6b:0002

	To list more information about the USB device and buses on the development kit use the following command.

This command will output a good chunk of information. This guide will only show a snippet of the expected output for the USB drive that was just connected.

Target (Linux)

 lsusb -v -s 003:002

Note

“003” refers to bus 003 and “002” refers to the device number, both of these can be found in the lsusb command.

Expected Output for Example USB Drive

Bus 003 Device 002: ID 090c:1000 General USB Flash Disk
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 0
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x090c
 idProduct 0x1000
 bcdDevice 11.00
 iManufacturer 1 General
 iProduct 2 USB Flash Disk
 iSerial 3 04NO3BEZ826XRN7H
 bNumConfigurations 1
 Configuration Descriptor:
 bLength 9
 ...

	The speed of the USB device can be determined with either the lsusb -v from above or by reading the device’s “speed”

Target (Linux)

cat /sys/bus/usb/devices/3-1/speed

cat /sys/bus/usb/devices/usb3/speed

Note

USB2.0 has transmission speeds up to 480Mbit/s, also known as “full speed”.

Mounting USB Stroage Devices

	Verify that a device directory was established for the USB drive.

	Run the following command to confirm the USB device name.

Target (Linux)

ls /dev/sd*

Expected Output

root@phycore-am57xx-1:~# ls /dev/sd*
/dev/sda /dev/sda1

	Remove the USB drive and re-insert it.

	The output log that appears when connecting the USB device will indicate the devices name.

Expected Output

root@phycore-am57xx-1:~# [32.154693] usb 3-1: new high-speed USB device number 2 using xhci-hcd
[32.336120] usb 3-1: New USB device found, idVendor=090c, idProduct=1000, bcdDevice=11.00
[32.344360] usb 3-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[32.352355] usb 3-1: Product: USB Flash Disk
[32.356689] usb 3-1: Manufacturer: General
[32.360839] usb 3-1: SerialNumber: 04NO3BEZ826XRN7H
[32.384979] usb-storage 3-1:1.0: USB Mass Storage device detected
[32.392700] scsi host1: usb-storage 3-1:1.0
[32.398284] usbcore: registered new interface driver usb-storage
[32.407379] usbcore: registered new interface driver uas
[33.696716] scsi 1:0:0:0: Direct-Access General USB Flash Disk 1100 PQ: 0 ANSI: 4
[33.706268] sd 1:0:0:0: [sda] 31506432 512-byte logical blocks: (16.1 GB/15.0 GiB)
[33.717529] sd 1:0:0:0: [sda] Write Protect is off
[33.726043] sd 1:0:0:0: [sda] No Caching mode page found
[33.731384] sd 1:0:0:0: [sda] Assuming drive cache: write through
[33.808105] sda: sda1
[33.812774] sd 1:0:0:0: [sda] Attached SCSI removable disk
[34.192993] cryptd: max_cpu_qlen set to 1000

	Make a directory for mounting the USB device.

Target (Linux)

 mkdir ~/usb_sda

	Format file type.

Target (Linux)

 mkfs.vfat /dev/sda

	Mount the USB device to the directory.

Target (Linux)

mount /dev/sda ~/usb_sda/

	See what media is on the USB drive.

Target (Linux)

 ls ~/usb_sda/

Write to the USB Host Device

	Generate a random 10 MB file to test transferring data from the storage device.

Target (Linux)

dd if=/dev/urandom of=test.file count=10 bs=1M

	Copy the file to your storage device.

Target (Linux)

cp test.file ~/usb_sda/ && sync

	Verify that the file wasn’t corrupted with md5sum. Both the hashes should match.

Target (Linux)

md5sum test.file ~/usb_sda/test.file

Expected Output

root@phycore-am57xx-1:~# md5sum test.file ~/usb_sda/test.file
ad3de54f2681aa83e87d80a9acaa4d16 test.file
ad3de54f2681aa83e87d80a9acaa4d16 /root/usb_sda/test.file

Read from the USB Host Device

	Copy the test file we previously created during the write process back to the host:

Target (Linux)

cp ~/usb_sda/test.file readback-usb.file && sync

	We can double check that the file was successfully copied to and from the USB device by checking the md5sum of the file:

Target (Linux)

md5sum test.file readback-usb.file

Expected Output

root@phycore-am57xx-1:~# md5sum test.file readback-usb.file
ad3de54f2681aa83e87d80a9acaa4d16 test.file
ad3de54f2681aa83e87d80a9acaa4d16 readback-usb.file

Unmounting the Drive

Warning

Make sure the drive is unmounted prior to physically disconnecting the device.
Failure to do so may result in loss of data and corruption of files

Target (Linux)

umount ~/usb_sda/
umount /dev/sda

 USB WebCam

USB WebCam

The phyCORE-AM57x development kit supports many common USB WebCams via the Video4Linux2 driver which is included with the default kernel. This guide walks through the basic usage of the v4l2src utility in Linux to make changes to the Logitech C270 HD WebCam’s saturation setting and how to use OpenCV to stream video feed to the LCD-018 display.

[image: USB WebCam Demo Setup]

Requirements

	LCD-018-070-KAP

	7” LVDS Capacitive Touch Display

	Contact Sales [https://www.phytec.com/contact/]

	
	WebCam

	C270 HD WEBCAM <https://www.logitech.com/en-us/products/webcams/c270-hd-webcam.960-000694.html>

	A Rubber Duck (Optional)

Connecting the Display

	Verify that the DIP switches (S1) on the back of the LCD-018 are set to backlight to use the PWM setting.

[image: ../_images/pb-057948_display-S1-pwm.jpg]

Note

The backlight can be set to either: “always on”, “always off”, “PWM”, or “potentiometer”.

	With the kit powered off and the power supply removed, connect the display to the connectors at X25.

	Open the X25 connector by gently pulling the black tab toward the edge of the board.

	Insert the ribbon cable into the connector, with the blue tape facing up.

	Once the ribbon cable has been seated into the connector, pull the black tab back towards it’s closed position.

	The red connector should be a standard push in connection.

[image: LCD to Carrier Board Connection]

Loading the Display

	Power on the development kit and hit any key to stop in U-Boot.

	Load the device tree overlay needed for operating the display then boot into Linux.

Target (U-Boot)

setenv overlays am57xx-phytec-pcm-948-lcd-018.dtbo
saveenv
boot

Note

For more information about overlays see chapter Configuring the Bootloader.

	While the kit is booting, the PHYTEC logo with a loading bar should display on the screen. This should be followed by a “Multitouch” demo should appear.

Verifying Default Settings

	Connect the WebCam to the USB3.0 port designated as X30. A kernel messages should appear. This message is indicating that the WebCam was detected.

Expected Output

root@phycore-am57xx-1:~# [1403.872039] usb 3-1: USB disconnect, device number 2
[1409.682067] usb 1-1: new high-speed USB device number 2 using xhci-hcd
[1410.084136] usb 1-1: New USB device found, idVendor=046d, idProduct=0825, bcdDevice= 0.12
[1410.092376] usb 1-1: New USB device strings: Mfr=0, Product=0, SerialNumber=2
[1410.099548] usb 1-1: SerialNumber: 2030A1E0
[1410.131103] uvcvideo: Found UVC 1.00 device <unnamed> (046d:0825)
[1410.249450] input: UVC Camera (046d:0825) as /devices/platform/44000000.ocp/48800000.interconnect/48800000.interconnect:segment@0/48880000.target-module/48880000.omap_dwc3_1/48890000.usb/xhci-hcd.2.auto/usb1/1-1/1-1:1.0/input/input4
[1411.679321] usb 1-1: set resolution quirk: cval->res = 384

	Verify that the WebCam appears as a new device.

Target (Linux)

ls /dev/video*

	Available settings can be seen using the command below.

Target (Linux)

v4l2-ctl -d 1 --list-ctrls

Expected Output

root@phycore-am57xx-1:~# v4l2-ctl -d 1 --list-ctrls
[1558.744232] usb 1-1: reset high-speed USB device number 2 using xhci-hcd
 brightness 0x00980900 (int) : min=0 max=255 step=1 default=128 value=128
 contrast 0x00980901 (int) : min=0 max=255 step=1 default=32 value=32
 saturation 0x00980902 (int) : min=0 max=255 step=1 default=32 value=32
white_balance_temperature_auto 0x0098090c (bool) : default=1 value=1
 gain 0x00980913 (int) : min=0 max=255 step=1 default=64 value=64
 power_line_frequency 0x00980918 (menu) : min=0 max=2 default=2 value=2
 white_balance_temperature 0x0098091a (int) : min=0 max=10000 step=10 default=4000 value=4000 flags=inactive
 sharpness 0x0098091b (int) : min=0 max=255 step=1 default=24 value=24
 backlight_compensation 0x0098091c (int) : min=0 max=1 step=1 default=0 value=0
 exposure_auto 0x009a0901 (menu) : min=0 max=3 default=3 value=3
 exposure_absolute 0x009a0902 (int) : min=1 max=10000 step=1 default=166 value=166 flags=inactive
 exposure_auto_priority 0x009a0903 (bool) : default=0 value=1

Video on Display

	Enter this command to open a file named videoFeed.py using the Vi Text Editor:

Target (Linux)

gst-launch-1.0 -v v4l2src device=/dev/video1 ! videoconvert ! autovideosink

[image: Functional View Finder Example]

	Enter Ctrl + C to stop feed.

Getting Fancy!

	Now that we have an idea of what the default settings look like, lets drop the saturation to zero before checking the video feed again:

Target (Linux)

v4l2-ctl -d 1 --set-ctrl=saturation=0
gst-launch-1.0 -v v4l2src device=/dev/video1 ! videoconvert ! autovideosink

[image: Functional View Finder Example with Low Saturation]

	Try modifying the other settings in a similar way until you have your camera configured the way you like!

 WiFi

WiFi

The phyCORE-AM57x development kit does not have Bluetooth integrated on the carrier board, but it can support external Bluetooth modules via the 2x16 pin header (X26). This guide will walk through the basic setup and usage of WiLink8 WiFi module (PCM-949 or PCM-958). For more information on WiFi on the phyCORE-AM57x, please see section 19 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

[image: ../_images/pb-057948_wifi-bt.png]

Requirements

	WiFi Module

	WiLink8 WiFi Module (PCM-949)

	Contact Sales [https://www.phytec.com/contact/]

Note

The WiLink8 module can only operate at 2.4GHz. You will need access to a 2.4GHz Wifi network in order to follow this guide and to utilize this module.

Hardware Setup

	Power off and remove power from the kit.

	Connect the module at X26.

[image: ../_images/pb-057948_wifi-bt-pcm949.png]

Enable the Bootloader Overlay

The bootloader environment needs to be modified in order to enable the WiFi device tree overlay before booting into Linux.

	Power on the development kit and hit any key to stop in U-Boot.

Target (U-Boot)

 setenv overlays am57xx-phytec-pcm-948-wlan-wilink8.dtbo
 boot

Note

For more information about overlays see the guide Configuring the Bootloader.

Configure WiFi Credentials

	Once in Linux, scan for available networks:

Target (Linux)

iw wlan0 scan | grep SSID

Example Output

 SSID: OFFICE-GUEST
 SSID: OFFICE-5G

	With a network identified, use wpa_passphrase to create the NETWORK section of your wpa_supplicant-wlan0.conf file with your network credentials and password fille in:

Note

Update “MYSSID” and “passphrase” to the correct credentials for your target network.

Target (Linux)

mkdir -p /etc/wpa_supplicant
wpa_passphrase MYSSID passphrase > /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

	Now we can edit the wpa_supplicant-wlan0.conf to include the rest of our network configuration.

Target (Linux)

vi /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

(Updated wpa_supplicant-wlan0.conf)

 # Giving configuration update rights to wpa_cli
 ctrl_interface=/var/run/wpa_supplicant
 ctrl_interface_group=0
 update_config=1

 # AP scanning
 ap_scan=1

 # ISO/IEC alpha2 country code in which the device is operating
 country=US

 # network section generated by wpa_passphrase
 network={
 ssid="OFFICE-GUEST"
 #psk="123456"
 psk=59e0d07fa4c7741797a4e394f38a5c321e3bed51d54ad5fcbd3f84bc7415d73d
 }

Establish A Connection

	Enable the wpa_service for the wlan0 interface:

Target (Linux)

systemctl enable wpa_supplicant@wlan0.service

	Restart the systemd-networkd and wpa_supplicant services:

Target (Linux)

systemctl restart systemd-networkd.service
systemctl restart wpa_supplicant@wlan0.service

	Confirm wlan0 is connected to the network.

Target (Linux)

iw dev wlan0 link

Expected Output

Connected to 6e:d7:9a:cd:92:e9 (on wlan0)
SSID: OFFICE-GUEST
freq: 2437
RX: 3684015 bytes (18198 packets)
TX: 57638 bytes (745 packets)
signal: -88 dBm
rx bitrate: 39.0 MBit/s
tx bitrate: 6.0 MBit/s

bss flags: short-preamble short-slot-time
dtim period: 1
beacon int: 100

	Check the IP address:

Target (Linux)

ip addr show wlan0

Expected Output

 5: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
 link/ether c0:ee:40:84:4e:ec brd ff:ff:ff:ff:ff:ff
 inet 100.55.50.55/24 metric 1024 brd 100.55.50.255 scope global dynamic wlan0
 valid_lft 70512sec preferred_lft 70512sec
 inet6 fe80::c2ee:40ff:fe84:4eec/64 scope link
 valid_lft forever preferred_lft forever

	In the above example output we can see that this system has been assigned the 100.55.50.55 IPv4 address.

	Verify that the WiFi module connected to the network.

Target (Linux)

 ping -c 5 google.com

Expected Output

 PING google.com (142.251.33.110): 56 data bytes
 64 bytes from 142.251.33.110: seq=0 ttl=56 time=464.257 ms
 64 bytes from 142.251.33.110: seq=1 ttl=56 time=13.316 ms
 64 bytes from 142.251.33.110: seq=2 ttl=56 time=15.097 ms
 64 bytes from 142.251.33.110: seq=3 ttl=56 time=13.265 ms
 64 bytes from 142.251.33.110: seq=4 ttl=56 time=13.039 ms

 --- google.com ping statistics ---
 5 packets transmitted, 5 packets received, 0% packet loss
 round-trip min/avg/max = 13.039/103.794/464.257 ms

Enabling the Firmware and Building the BSP (Yocto)

An error may occur simular to the error, Direct firmware load for brcm/brcmfmac4373-sdio.phytec,am5728-phytec-pcm-948-40300111I.bin failed with error -2 . Use the following section to select a regdomain and clear the error.

	It is required that you select the region when building the BSP in order for the firmware to be included in the Image. Reference this Build the BSP guide to build the BSP image.

Set LWB_REGDOMAIN

	From the base Yocto directory we can edit our common.inc file as follows:

Host (Yocto BSP Build)

 vim sources/meta-ampliphy/conf/distro/common.inc

	Un-comment the following line and update the region if necessary:

common.inc Excerpt

 # Define Country Code for Laird LWB WiFi chips.
 # Possible Codes: US/CA/ETSI/JP/AU/CN/TW/BR/KR
 # ETSI includes all member countries of the European Union.
 LWB_REGDOMAIN = "US" #<----- Uncomment this line

	A list of regions is shown under Possible Codes for reference.

	Rebuild the BSP and proceed.

 Booting Essentials

Booting Essentials

This section of the product wiki contains guides to update and boot from different boot sources on the phyCORE-AM57x SOM.

	SD Card

	eMMC

	NAND

	Copying Files to the Device

	Configuring the Bootloader

	Using the PHYTEC EEPROM Flashtool

Boot Modes

The phyCORE-AM57x development kit supports booting from many different interfaces. By default, the development kit is set to boot from the SD card. To change the boot device, DIP switch S5 can be used. Boot switches should be changed with power off.

Boot Settings

	SD

	eMMC

	NAND

	[image: ../_images/pb-057948_boot-sd.png]

	[image: ../_images/pb-057948_boot-emmc.png]

	[image: ../_images/pb-057948_boot-nand.png]

[image: phyCORE-AM57x Boot Switch Location]

 SD Card

SD Card

Create a Bootable SD Card

In order to create a bootable SD card a BSP image has to be flashed onto it. Flashing is a term used to describe the process of burning software images to a flash memory storage device, hence flashing. This section of the guide will outline the steps for flashing the complete .wic.xz image format to an SD Card. The .wic.xz image format is a compressed binary consisting of all the necessary binaries, as well information about the require disk partitions needed for booting the phyCORE-AM57x into Linux. This includes the bootloader, kernel and root filesystem.

In order to boot the phyCORE-AM57x development kit into Linux, it must load valid software from a memory storage device. It is typical for production systems to boot software from an onboard (non-removable) memory storage device such as eMMC memory but booting from an SD Card is more convenient during development. The phyCORE-AM57x development kit is configured to boot from an SD Card by default.

A pre-configured SD Card should have been included in the box with your development kit but this guide will walk through the creation of a bootable SD Card using Pre-Built Binaries or images you have generated on your own by following the Build the BSP guide.

Requirements

	SDHC SD card, at least 4GB (Included in development kit)

	SD card reader

	Ubuntu 20.04 LTS, 64-bit Host Machine with root permission. (For Updating Individual Parts)

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	Windows 10

	If flashing whole default wic.xz image onto SD card.

	Download Pre-Built Binaries (unless using custom image)

	phytec-qt5demo-image-phycore-am57xx-1.wic.xz

Note

If you have built your own images by following the Build the BSP guide, then the images are located in: $YOCTO_DIR/build/arago-tmp-external-linaro-toolchain/deploy/images/<MACHINE>/

Flashing SD Card with Pre-Built Binaries

Windows 10

	Download the SD card flasher app BalenaEtcher [https://www.balena.io/etcher]

	Download the prebuilt SD card image Pre-Built Binaries.

	Now that your system is setup, use the BalenaEtcher SD card flasher to create a bootable SD card.

	Open BalenaEthcher and select “Flash from file”.

	Select the ‘phytec-qt5demo-image-phycore-am57xx-1.wic.xz’ SD card image file from your Downloads folder.

	Then insert the SD card into the SD card reader.

	Click on “Select Target” and select the SD card.

	Begin flashing the SD card by pressing “Flash!”

	Once BalenaEtcher is done flashing the SD card image, eject the SD card from the Host PC and insert the SD card into the development kit.

See the section “Booting from SD Card” for more information.

Linux (Ubuntu)

	Download the pre-built Pre-Built Binaries for the latest BSP release and navigate to the location of these files using your Linux Host Machine:

Host (Ubuntu)

cd ~/Downloads

	Run the following command without the SD card connected to the host machine.

Host (Ubuntu)

ls /dev/sd*

	Connect the SD card to the Ubuntu host machine.

	Run the following command again with the SD card connected to the host machine.

Host (Ubuntu)

ls /dev/sd*

	Unmount the SD card from the host machine. Do not remove the card from the machine.

Host (Ubuntu)

umount /dev/sdX*

	Start with a clean SD card by deleting any previous partitions on the device.

Host (Ubuntu)

fdisk /dev/sdX

Use the following command sequence for reference once in the fdisk interactive session.
d # delete partition (you will need to repeat this for every partition present)
w # write the changes to the disk

	Navigate to the directory containing the ‘.wic.xz’ file you wish to flash. This might be wherever you downloaded the pre-built image or it could be the deployment directory of your local BSP build at $YOCTO_DIR/build/arago-tmp-external-linaro-toolchain/deploy/images/<MACHINE>/

Host (Ubuntu)

cd <image location>

	Flash the .wic.xz image to the SD Card:

Host (Ubuntu)

sudo xz -dc phytec-qt5demo-image-phycore-am57xx-1.wic.xz | sudo dd of=/dev/sdc bs=4M conv=fsync

	Re-insert the SD card into the SD card reader to see the newly flashed partitions.

Two USB partitions should appear. Double click both. There should be a /boot and /root partition.

	Unmount the partitions before removing the SD card:

Host (Ubuntu)

umount /media/<user>/boot /media/<user>/rootfs

	The SD card should now be ready to boot your target hardware into Linux. For more information on how to boot from SD card, see the section “Booting from SD Card”.

Updating Individual Parts (Advanced, Linux Machine)

Once the SD card has been formatted the first time via flashing the complete .wic.xz image, you do not need to flash the entire contents of the SD Card image again to update the image components. The bootloader, kernel and root filesystem can be updated individually (depending on the changes being tested) to potentially save a lot of time during development. Find all the images and binaries for the phyCORE-AM57x development kit on the Pre-Built Binaries page.

Updating the Kernel

	First, remove the existing kernel image and device tree files pertaining to your SOM (in this example we will assume the SOM is the standard kit option PCM-057-41300111I):

Host (Ubuntu)

sudo rm /media/<user>/root/boot/zImage
sudo rm /media/<user>/root/boot/oftree
sudo rm /media/<user>/root/boot/am57xx-phytec-pcm-948.dtb #Base Kernel Device Tree Blob for CB
sudo rm /media/<user>/root/boot/am5728-phytec-pcm-948-40300111I.dtb #Base Kernel Device Tree Blob

Note

You may notice that the /boot directory contains many dtb files for various SOM configurations. This is because the EEPROM on the phyCORE-AM57x SOM is used to help select which device tree should be used at boot. This strategy allows for the use of a single software image to support all phyCORE-AM57x variants.

For more information on this EEPROM mechanism, checkout Using the PHYTEC EEPROM Flashtool guide.

	Load the new Linux kernel and device tree images to the SD Card.

Host (Ubuntu)

sudo cp zImage /media/<user>/root/boot/
sudo cp oftree /media/<user>/root/boot/
sudo cp am57xx-phytec-pcm-948.dtb /media/<user>/root/boot/
sudo cp am5728-phytec-pcm-948-40300111I.dtb /media/<user>/root/boot/
sudo sync /media/<user>/root/boot/

Note

The U-boot expects the kernel to be named zImage and the standard SOM dtb file to be named am5728-phycore-kit-41300111i.dtb for the standard development kit.

Updating the Root Filesystem

	Delete the contents of the current root filesystem:

Host (Ubuntu)

sudo rm -rf /media/<user>/root/*

	Extract the new filesystem to the SD Card:

Host (Ubuntu)

sudo tar -xf phytec-qt5demo-image-phycore-am57xx-1.tar.xz -C /media/<user>/root/ && sync

Note

The tar.xz file can be found and downloaded in the first link on the Pre-Built Binaries page.

Updating the Bootloader

	Remove the existing U-Boot and MLO images:

Host (Ubuntu)

sudo rm /media/<user>/boot/u-boot.img
sudo rm /media/<user>/boot/MLO

	Copy the new images to the SD Card:

Host (Ubuntu)

sudo cp u-boot.img /media/<user>/boot/u-boot.img && sync
sudo cp MLO /media/<user>/boot/MLO && sync

Booting from SD Card

The phyCORE-AM57x development kit is configured to boot from an SD card slot by default and basic steps for performing this and establishing serial communication are outlined in the Quickstart. Boot switch (aka DIP switches) settings determine the location and method the boot ROM loads the first stage bootloader into memory before executing it.

With the phyCORE-AM57x Development kit powered off, set the following boot switch settings to boot from the SD Card.

[image: SD Card Boot Switch Settings]
[image: phyCORE-AM57x Boot Switch Location]

 eMMC

eMMC

Flashing the eMMC

By default, the phyCORE-AM57x development kit is configured to boot from an SD Card. This is generally one of the most convenient methods to boot your hardware throughout development because it allows for easy software updates and file transfers between your Host and target systems. In addition to creating a standard bootable SD card formatted with the phyCORE-AM57x Linux BSP, the following steps can be used to burn bootable software images to the onboard eMMC flash memory of the SOM, thus freeing up the SD Card slot on the carrier board.

The easiest way to access the SOM’s eMMC is to boot the SOM into Linux from an SD Card (you may already be doing this). The Linux instance running from the SD Card will need access to software binaries to flash to the eMMC; thus, we will also need to transfer those binaries to the SD Card so that they are present and accessible at runtime.

Note

When you boot into Linux from an SD Card, obviously all the required binaries for boot are all already present on the SD Card. But, the tricky part with copying the “in-use” software components, specifically the root filesystem of the SD Card, is that it is already actively mounted in memory while Linux is up and running. This makes copying the root filesystem to the eMMC complicated and prone to filesystem corruption/errors. For this reason, it is best to transfer the tarballed rootfs to the SD Card itself so that we have a inactive, unmounted copy of the root filesystem in userspace (it’s sort of like root filesystem “inception”, like that one confusing movie with Leonardo DiCaprio).

Requirements

	Ubuntu 20.04 LTS, 64-bit Host Machine with root permission.

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	Only needed if using Linux Host

	Windows 10

	Only needed if using Windows Host

	CAT5e cable (comes included with the development kit)

	For transferrring files

	If not using SD card reader

	Network switch connected to a DHCP enabled network

	For transferrring files

	If not using SD card reader

	SD Card Reader

	For transferrring files

	If not using SCP method

	4GB SD Card or larger (Included in development kit)

Preparing to Flash eMMC (Software)

	Download the prebuilt SD card image (wic.xz) on your machine. Find the pre-build images on the Pre-Built Binaries guide.

Warning

The machine number for the BSP image can be impacted based on the processor you are developing with. Please refer to the table in the Release Notes to assist in selecting the correct machine.

SD Card Reader (Linux Machine only)

	Power off the development kit and insert the SD card from the development kit to your SD card reader.

Target (Linux)

poweroff

	Transfer the SD card image onto the SD card.

Host (Ubuntu)

cd <image location>
sudo cp phytec-qt5demo-image-phycore-am57xx-1.wic.xz /media/<user>/root
sudo sync /media/<user>/root

	Safely eject the SD card from the Linux host machine.

	Insert the micro-SD card into the development kit.

SCP (Windows or Linux)

	With the develeopment kit booted into Linux, confirm the development kit’s ethernet IP address (DHCP). For more information on how to change the from a static IP address to a DHCP address, see the Ethernet interface guide.

Target (Linux)

ip addr

	Transfer the SD card image onto the SD card.

Note

For Windows users, use the Command Prompt tool. This can be accessed by typing “cmd” in the Windows search bar.

Host

cd <insert-path-to-files>
scp "phytec-qt5demo-image-phycore-am57xx-1.wic.xz" root@<insert-IP-address>:~

Preparing to Flash eMMC (Hardware)

	With the development kit powered off, verify that the boot switches are set to boot from SD card, not eMMC.

See the table on Booting Essentials page to confirm SD card boot switches.

Starting with a Clean eMMC

	Check the eMMC for existing filesystem partitions

Note

The eMMC is /dev/mmcblk1 and the SD Card is /dev/mmcblk0.

Target (Linux)

fdisk -l /dev/mmcblk1

Example Output

root@phycore-am57xx-1:~# fdisk -l /dev/mmcblk1
Disk /dev/mmcblk1: 7264 MB, 7616856064 bytes, 14876672 sectors
929792 cylinders, 1 heads, 16 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk1p1 0,0,0 0,0,0 1 14876671 14876671 7263M ee EFI GPT

	In the above example output, we see that /dev/mmcblk1 has a one partition on it. For the sake of this guide, we are going to first delete any and all existing partitions so that we can start from a clean eMMC flash device. We can do this using an fdisk interactive session.

Target (Linux)

umount /dev/mmcblk1*
fdisk /dev/mmcblk1

Use the following command sequence for reference once in the fdisk interactive session.
d # delete partition (you will need to repeat this for every partition present)
w # write the changes to the disk

Flash the eMMC

	Now we can flash the eMMC using the SD card binary you previously downloaded.

Target (Linux)

xzcat -dc phytec-qt5demo-image-phycore-am57xx-1.wic.xz | dd of=/dev/mmcblk1 bs=4M conv=fsync

	Now when you run the following ‘fdisk’ command the eMMC should be partitioned into two parts.

Target (Linux)

fdisk -l /dev/mmcblk1

Expected Output

root@phycore-am57xx-1:~# fdisk -l /dev/mmcblk1
Disk /dev/mmcblk1: 7264 MB, 7616856064 bytes, 14876672 sectors
116224 cylinders, 4 heads, 32 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk1p1 * 16,0,1 1023,3,32 2048 133119 131072 64.0M c Win95 FAT32 (LBA)
/dev/mmcblk1p2 1023,3,32 1023,3,32 133120 2036277 1903158 929M 83 Linux

	Power off the development kit and configure the hardware to boot from the onboard eMMC flash. See the section “Booting from eMMC” for more information on that.

Booting from eMMC

With the phyCORE-AM57x Development kit powered off, set the following boot switch settings to boot from the onboard eMMC.

[image: eMMC Boot Switch Settings]
[image: phyCORE-AM57x Boot Switch Location]

 NAND

NAND

The phyCORE-AM57x can be populated with an NAND flash as an easy to program nonvolatile memory. This guide will walk through how to flash a new image, custom image or default image onto NAND. For more information on NAND Flash Memory, please see section 6.3 in the Hardware Manual [https://www.phytec.com/product/phycore-am57x/#section-hardware-documentation].

Note

NAND boot is only supported by the phycore-am57xx-3 BSP image. Please see the Release Notes for further details on phycore-am57xx-3.

Requirements

	In order to flash images to the NAND storage device you will first need a SOM with NAND Flash populated. NAND is not offered on the standard development kit. The PCM-057-40A00111I.A0 SOM configuration is the one that is specifically needed for this guide. The SOM can have either an eMMC (U5) or NAND (U14) component placed here, as this is a multi-footprint design.

[image: ../_images/pb-057948_nand-u14-u5.png]

	Download the following pre-built binaries or use your custom files.

	If you have built your own images then the images are located in: $YOCTO_DIR/build/tmp/deploy/images/

	MLO [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-3/MLO]

	u-boot.img [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-3/u-boot.img]

	qt5demo ubi [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-3/phytec-qt5demo-image-phycore-am57xx-3.ubi]

	Bootable SD Card

	Booting from phycore-am57xx-3

	Optional CAT5e cable (comes included with the development kit)

	Used to transfer binaries to SD card

	Optional Network switch connected to a DHCP enabled network

	Used to transfer binaries to SD card

Verify NAND

Note

The Linux commands listed in this section will only work correctly if Linux is booted from SD card.

	Using an SD card, boot your phyCORE-AM57x SOM with NAND Flash into Linux.

	Once logged in as root, run the following command to make sure that NAND was detected and configured.

Target (Linux)

dmesg | grep -i 'nand'

Example Output

root@phycore-am57xx-3:~# dmesg | grep -i nand
[0.000000] Kernel command line: console=ttyS2,115200n8 root=ubi0:rootfs rw ubi.mtd=NAND.file-system rootfstype=ubifs rootwait=1
[8.205078] omap2-nand 8000000.nand: GPIO lookup for consumer rb
[8.205078] omap2-nand 8000000.nand: using device tree for GPIO lookup
[8.205108] of_get_named_gpiod_flags: parsed 'rb-gpios' property of node '/ocp/gpmc@50000000/nand@0,0[0]' - status (0)
[8.205261] nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xd3
[8.211639] nand: Micron MT29F8G08ABACAWP
[8.215698] nand: 1024 MiB, SLC, erase size: 256 KiB, page size: 4096, OOB size: 224
[8.223480] omap2-nand 8000000.nand: using prefetch polled xfer mode
[8.235015] 7 fixed-partitions partitions found on MTD device omap2-nand.0
[8.241912] Creating 7 MTD partitions on "omap2-nand.0":
[8.247283] 0x000000000000-0x000000040000 : "NAND.SPL"
[8.253540] 0x000000040000-0x000000080000 : "NAND.SPL.backup1"
[8.260437] 0x000000080000-0x0000000c0000 : "NAND.SPL.backup2"
[8.267303] 0x0000000c0000-0x000000100000 : "NAND.SPL.backup3"
[8.274169] 0x000000100000-0x000000300000 : "NAND.u-boot"
[8.280792] 0x000000300000-0x000000340000 : "NAND.u-boot-env"
[8.287628] 0x000000340000-0x000040000000 : "NAND.file-system"
[9.806457] ubi0: attached mtd6 (name "NAND.file-system", size 1020 MiB)

	Lets also take the chance to test that the NAND is operational:

Target (Linux)

flash_erase /dev/mtd4 0 0
nandtest -p 25 /dev/mtd4

You should see a number of tests execute and pass.

Software Setup

This example will use the Secure Copy Protocol (SCP), which requires a network connection. Discover more mediums that can assist in copying files by following the guide Copying Files to the Device.

	Copy the downloaded or custom binaries over to the SD card into the /root partition in the home directory.

	Connect the development kit to your local network using either ethernet port.

	Confirm the development kit’s ethernet IP address (DHCP). For more information on how to change the from a static IP address to a DHCP address, see the Ethernet interface guide.

Target (Linux)

ip addr

	Transfer files via Windows Command Prompt or Linux terminal.

Host (Ubuntu or Windows)

cd <file location>
sudo scp MLO u-boot.img phytec-qt5demo-image-phycore-am57xx-3.ubi root@<devkit_ip_address>:./home/

Flashing NAND

	Now lets flash each image:

Target (Linux)

#Flash MLO
flash_erase /dev/mtd0 0 0
nandwrite -p /dev/mtd0 MLO
#Flash MLO into all backup partitions
flash_erase /dev/mtd1 0 0
nandwrite -p /dev/mtd1 MLO
flash_erase /dev/mtd2 0 0
nandwrite -p /dev/mtd2 MLO
flash_erase /dev/mtd3 0 0
nandwrite -p /dev/mtd3 MLO

#Flash U-Boot
flash_erase /dev/mtd4 0 0
nandwrite -p /dev/mtd4 u-boot.img

#Flash the rootfs
flash_erase /dev/mtd6 0 0
ubiformat /dev/mtd6 -f phytec-qt5demo-image-phycore-am57xx-3.ubi

Booting from NAND

With the phyCORE-AM57x Development kit powered off, set the following boot switch settings to boot from NAND.

[image: eMMC Boot Switch Settings]
[image: phyCORE-AM57x Boot Switch Location]

 Copying Files to the Device

Copying Files to the Device

There are several ways of transferring files to and from your target device. Please reference the following for some possible methods.

Using a Network

Note

Before being able to transfer files using network protocols, you will first need to establish a network connection and know the ip address of the target device. See the Ethernet interface guide for more information.

Secure Copy Protocol

Secure Copy Protocol (SCP) is built around a Secure Shell connection (SSH) and offers all the same security features. One advantage of using this method for transferring single files is that it is generally pretty fast but you won’t get interactive functionality when pulling multiple files from a remote server. For example, you won’t be able to list out directory contents and see what other files are available. SCP also has no file size limitations.

Note

The following SCP section can be done in a Linux machine (Ubuntu) or in Windows via command prompt.
Window’s command prompt can be access easily by hitting the Window’s key and typing “cmd” + Enter.

	Using the terminal on your host machine, navigate to the directory containing the file you wish to transfer to the target device.

Host (Ubuntu)

cd <insert-path-to-files>

	Use the following command to transfer your file:

Host (Ubuntu)

sudo scp <insert-name-of-file> root@<insert-IP-address>:~

	Your copied file will appear in the root directory on the target device.

	To go the other direction and retrieve files from the target device, just flip the source and destination arguments:

Host (Ubuntu)

sudo scp root@<insert-IP-address>:<insert-name-of-file> <insert-path-to-destination>

Trivial File Transfer Protocol

TFTP can be used for transferring files to and from your Host Machine and Target Hardware very quickly. While it is very fast, it is a NON-SECURE way of transferring files as it doesn’t use any kind of encryption. You should only use this method of transferring files when working on your Local Area Network.

Setup the TFTP Server

	Install TFTP server functionality on your Host PC:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install tftpd-hpa

	Using your favorite text editor (the following command will use vim), open the TFTP configuration file. Here you can specify a folder (this will behave as the file server) where the files will reside on your Host PC by replacing the folder path for ‘’TFTP_DIRECTORY’’ with whatever folder you wish to use as your TFTP file storage location, or leave the folder as the default.

Host (Ubuntu)

sudo vim /etc/default/tftpd-hpa

/etc/default/tftpd-hpa (Default Content)

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/var/lib/tftpboot"
TFTP_ADDRESS=":69"
TFTP_OPTIONS="--secure --create"

Remember to save any changes you may have made.

	If you made any changes to the settings of the TFTP server, you need to restart it for them to take effect.

Host (Ubuntu)

sudo systemctl restart tftpd-hpa

	If you would like to grant every user on the system permission to place files in the TFTP directory, use the following command (you will have to specify your storage location if you changed the default location):

Host (Ubuntu)

sudo chmod ugo+rwx /var/lib/tftpboot

	Configure your firewall to allow TFTP connections (these occur via UDP on port 69 by default):

Host (Ubuntu)

firewall-cmd --add-port=69/udp

Note

If you get an error about firewall-cmd being an unrecognized command then we will have to install it before running the above step. SKIP THIS if you didn’t have trouble running that last step:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install firewalld

	For the sake of testing, lets throw a test file into the server we just setup to practice retrieving it:

Host (Ubuntu)

echo "test" > /var/lib/tftpboot/testS.txt

	The final step for the TFTP Server setup is simply knowing the server’s IPv4 address. You can find this using this command:

Host (Ubuntu)

ifconfig

TFTP Client Setup

	With your target hardware connected to the same network as your Host Machine, enter the following command to retrieve the test file we created on the server. You will need to replace the Xs with the IPv4 address of the server we found earlier:

Target (Linux)

tftp -gr testS.txt XXX.XXX.XXX.XXX:69

	In order to move files in the opposite direction, from the Target Hardware to the Host Machine, we just need to change the “get” option to a “put” and then specify the file we are moving:

Target (Linux)

echo "test" > testC.txt
tftp -pr testC.txt XXX.XXX.XXX.XXX:69

Network Filesystem Server

A Network Filesystem Server (NFS) gives other systems the ability to mount a filesystem stored on a Host PC which is exported over the network. Aside from the initial setup, this is the easiest way to transfer files back and forth between systems and PHYTEC recommends using the strategy during application development.

NFS Server Setup

	On your Host Machine, create a directory to use as the filesystem on the NFS Server and ensure it is accessible:

Host (Ubuntu)

sudo mkdir -p /mnt/testNFS
sudo chown nobody:nogroup /mnt/testNFS
sudo chmod 777 /mnt/testNFS

	Run the following to update/install NFS packages on your Ubuntu host Machine:

Host (Ubuntu)

sudo apt-get update
sudo apt install nfs-kernel-server

	Using your favorite text editor, open the file configuring exported filesystems. Use the following command to do this using the Vim Text Editor:

Host (Ubuntu)

sudo vim /etc/exports

	Add the following line to the end of the file (replace Xs with your AM57x’s IP address and network mask in the command using this format, <ip address>/<net mask>):

/etc/exports

/mnt/testNFS XXX.XXX.XXX.XXX/XXX.XXX.XXX.XXX(rw,sync,no_root_squash,no_subtree_check)

	Save and close the file.

	Export the NFS Server:

Host (Ubuntu)

sudo exportfs -va

	Modify your firewall to allow your AM57x to mount the NFS Server’s filesystem:

Host (Ubuntu)

firewall-cmd --add-port=2049/tcp

	Restart your NFS Server:

Host (Ubuntu)

sudo systemctl restart nfs-kernel-server

NFS Client Setup

	Create a directory to mount the NFS Server’s filesystem to:

Target (Linux)

mkdir ~/testNFS

	Mount the NFS Server (replace <host ip address> with the ip address of your Host Machine you set the NFS server on):

Target (Linux)

mount -t nfs <host ip address>:/mnt/testNFS ~/testNFS/

	Now check out the contents of the mounted NFS server. The file we placed there previously should already be there:

Target (Linux)

ls ~/testNFS/

	You should find that when you add a file to this NFS directory (from either the side of the Server of the Client) that it appears automatically wherever the NFS server is mounted.

Using Removable Storage Devices

USB Storage Device

These instructions walkthrough exercising the USB Host interface on the development kit, but since your Ubuntu Host Machine is also a Linux system, you can similarly transfer files to the same storage media to exchange files.

What You Will Need

	USB Storage Device [https://www.amazon.com/SanDisk-Ultra-Drive-Type-C-Flash/dp/B07YYJ63VF/ref=asc_df_B07YYJ63VF/?tag=&linkCode=df0&hvadid=416944208773&hvpos=&hvnetw=g&hvrand=10122061217681121613&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9033314&hvtargid=pla-858626018619&ref=&adgrpid=99659216531&th=1]

Verifying USB Interface

	With the phyCORE-AM57x development kit booted into Linux, verify that there are 4 USB devices.

Target (Linux)

lsusb

Expected Output

root@phycore-am57xx-1:~# lsusb
Bus 004 Device 001: ID 1d6b:0003
Bus 003 Device 001: ID 1d6b:0002
Bus 002 Device 001: ID 1d6b:0003
Bus 001 Device 001: ID 1d6b:0002

	Insert a USB device into X9.

Expected Output

root@phycore-am57xx-1:~# [32.154693] usb 3-1: new high-speed USB device number 2 using xhci-hcd
[32.336120] usb 3-1: New USB device found, idVendor=090c, idProduct=1000, bcdDevice=11.00
[32.344360] usb 3-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[32.352355] usb 3-1: Product: USB Flash Disk
[32.356689] usb 3-1: Manufacturer: General
[32.360839] usb 3-1: SerialNumber: 04NO3BEZ826XRN7H
[32.384979] usb-storage 3-1:1.0: USB Mass Storage device detected
[32.392700] scsi host1: usb-storage 3-1:1.0
[32.398284] usbcore: registered new interface driver usb-storage
[32.407379] usbcore: registered new interface driver uas
[33.696716] scsi 1:0:0:0: Direct-Access General USB Flash Disk 1100 PQ: 0 ANSI: 4
[33.706268] sd 1:0:0:0: [sda] 31506432 512-byte logical blocks: (16.1 GB/15.0 GiB)
[33.717529] sd 1:0:0:0: [sda] Write Protect is off
[33.726043] sd 1:0:0:0: [sda] No Caching mode page found
[33.731384] sd 1:0:0:0: [sda] Assuming drive cache: write through
[33.808105] sda: sda1
[33.812774] sd 1:0:0:0: [sda] Attached SCSI removable disk
[34.192993] cryptd: max_cpu_qlen set to 1000

	Verify that the USB was properly recongnized by development kit.

Target (Linux)

lsusb

Expected Output

root@phycore-am57xx-1:~# lsusb
Bus 004 Device 001: ID 1d6b:0003
Bus 003 Device 002: ID 090c:1000 General USB Flash Disk
Bus 003 Device 001: ID 1d6b:0002
Bus 002 Device 001: ID 1d6b:0003
Bus 001 Device 001: ID 1d6b:0002

Mounting USB Storage Devices

	Make a directory for mounting the USB device.

Target (Linux)

 mkdir ~/usb_sda

	Format file type.

Target (Linux)

 mkfs.vfat /dev/sda

	Mount the USB device to the directory.

Target (Linux)

mount /dev/sda ~/usb_sda/

	See what media is on the USB drive.

Target (Linux)

 ls ~/usb_sda/

Write to the USB Host Device

	Generate a random 10 MB file to test transferring data from the storage device.

Target (Linux)

dd if=/dev/urandom of=test.file count=10 bs=1M

	Copy the file to your storage device.

Target (Linux)

cp test.file ~/usb_sda/ && sync

Verify that the file wasn’t corrupted with md5sum. Both the hashes should match.

Target (Linux)

md5sum test.file ~/usb_sda/test.file

Expected Output

root@phycore-am57xx-1:~# md5sum test.file ~/usb_sda/test.file
ad3de54f2681aa83e87d80a9acaa4d16 test.file
ad3de54f2681aa83e87d80a9acaa4d16 /root/usb_sda/test.file

Read from the USB Host Device

	Copy the test file we previously created during the write process back to the host:

Target (Linux)

cp ~/usb_sda/test.file readback-usb.file && sync

	We can double check that the file was successfully copied to and from the USB device by checking the md5sum of the file:

Target (Linux)

md5sum test.file readback-usb.file

Expected Output

root@phycore-am57xx-1:~# md5sum test.file readback-usb.file
ad3de54f2681aa83e87d80a9acaa4d16 test.file
ad3de54f2681aa83e87d80a9acaa4d16 readback-usb.file

Unmounting the Drive

Warning

Make sure the drive is unmounted prior to physically disconnecting the device.
Failure to do so may result in loss of data and corruption of files

Target (Linux)

umount ~/usb_sda/
umount /dev/sda

SD Card (Root Partition)

Since our Host Machines have access to the SD Card readers, we can use the bootable SD Card itself to transfer files to and from the development kit too, the only down side for this is that you will need to power off the development kit before removing the primary boot media.

	Power off the development kit.

Target (Linux)

poweroff

	Remove the SD card and connect it to your Linux machine via an SD card reader.

Note

You will not be able to place files on the SD card using Windows because the SD Card’s rootfs partition is formatted for Linux. Windows does not recognize the format the ext4 format used.

The SD Card is formatted with a minimal root filesystem size by default and in order to transfer larger files it may become necessary to increase its size to take advantage of the full size of the SD Card.

	Increase the root filesystem partition of the SD card.

	Run the following command without the SD card connected to the host machine.

Host (Ubuntu)

ls /dev/sd*

	Connect the bootable SD card to your Ubuntu host machine.

	Run the following command with the SD card connected to the host machine.

The SD card device name is of the form /dev/sd[a-z] in Ubuntu and the letter identifier along with any partitions (signified by the numbers following the letter) on the SD card are enumerated upon connection to the host machine. Look at the second output of the command and look for new devices that appeared there, the new device will correspond to the SD card. Remember the /dev/sdX identifier corresponding to your SD card as you will need to use this in the following step.

Host (Ubuntu)

ls /dev/sd*

Be confident you have the correct */dev/sdX* device identified for your SD card before proceeding. Specifying the incorrect disk using the ‘fdisk’ utility in the steps below can potentially destroy your Virtual Machine and will require you to set it back up again from scratch.

	It is best to first backup the SD card to a file just in case something goes terribly wrong and you end up losing its contents:

Host (Ubuntu)

 umount /dev/sdX* #unmount the entire SD Card, not just any single partition
 sudo dd if=/dev/sdX of=~/backup.sdcard bs=1M conv=fsync && sync

	Use the fdisk utility and provided command sequence to create a new, larger root filesystem partition in the SD card’s partition table:

Host (Ubuntu)

sudo fdisk /dev/sdX

fdisk is an interactive utility, use the following command sequence
p (print the partition table and note the starting sector of the 2nd partition, call this START2. START2=196608 using the pre-built software)
d (delete a partition)
2 (select the root filesystem)
n (create a new partition)
p (make it a primary partition)
2 (make it the second partition)
START2 (specify the same starting sector for the 2nd partition as before)
ENTER (just hit ENTER to use the default size, which will automatically use up the remaining space on the SD Card)
w (write the changes)

	Disconnect and reconnect the SD card from the host machine at this point to ensure the new partition table is being picked up by the kernel.

	Finally, grow the root filesystem to take up the entire space in the partition:

Host (Ubuntu)

sudo resize2fs /dev/sdX2

	Drag and drop the file to the rootfs partition of the SD card using the GUI.

	In order to copy files to the SD card using the terminal, this can be done with the standard ‘cp’ (copy) command.

	The next time you boot your phyCORE-AM57x into Linux, using the same SD Card, your file should be present in the filesystem.

 Configuring the Bootloader

Configuring the Bootloader

Change the Device Tree

By default, U-boot loads a device tree binary (dtb) file named oftree during boot. The oftree file is a copy of am5728-phytec-pcm-948-40300111I.dtb. This portion of the guide will instruct how to change U-boot to load different device trees.

	Power on the board and press any key to stop autoboot when prompted by the bootloader.

Note

help is a useful tool in U-Boot to show available commands and usage.

	Use the following command to verify that all of the environment variables are set as intended:

Target (U-Boot)

printenv

	Use the following command to list the available file’s within the root filesystem’s /boot directory:

Target (U-Boot)

ls mmc 0:2 boot

Example Output

=> ls mmc 0:2 boot
<DIR> 4096 .
<DIR> 4096 ..
 214503 am5728-phytec-pcm-948-40300111I.dtb
 214503 am5728-phytec-pcm-948-50500111I.dtb
 214503 am5729-phytec-pcm-948-10306111I.dtb
 208683 am5749-phytec-pcm-948-32302111I.dtb
 1538 am57xx-phytec-pcm-948-gpio-fan.dtbo
 3409 am57xx-phytec-pcm-948-lcd-017.dtbo
 3924 am57xx-phytec-pcm-948-lcd-018.dtbo
 3755 am57xx-phytec-pcm-948-vm-009.dtbo
 3235 am57xx-phytec-pcm-948-vm-011.dtbo
 3615 am57xx-phytec-pcm-948-vm-016.dtbo
 3454 am57xx-phytec-pcm-948-wlan-wilink8.dtbo
 370 am57xx-phytec-pcm-948-x28-spidev.dtbo
 205388 am57xx-phytec-pcm-948.dtb
 205388 oftree
<SYM> 15 zImage
 5366272 zImage-5.10.168

	We can check which file is the active device tree like so:

Target (U-Boot)

printenv fdtfile

	Change the default device tree.

Target (U-Boot)

setenv fdtfile <dtb name>
saveenv
boot

U-boot will now load the dtb file named ‘<dtb name>’ automatically during subsequent boots (just replace it with the appropriate file name when you run the command).

Working with Overlays

The PHYTEC BSP also comes with some device tree overlays to help evaluate certain interfaces and accessory hardware. The table “Linux Device Tree Summary [https://docs.phytec.com/latest/phycore-am57x/releasenotes/index.html#linux-device-tree-summary] in the Release Notes shows an overview of all available overlays.

Enable an Overlay

	U-boot has an extra environment variable called “overlays” to apply device tree overlay files. We can enable device tree overlays with it like so:

Target (U-boot)

setenv overlays am57xx-phytec-pcm-948-vm-016.dtbo
saveenv
boot

	Moreover, it’s possible to enable multiple overlays by separating them with a space.

Target (U-boot)

setenv overlays am57xx-phytec-pcm-948-vm-016.dtbo am57xx-phytec-pcm-948-x28-spidev.dtbo
saveenv
boot

The saveenv command stores the boot environment to non-volatile memory. If you would like temporarily adjust the boot environment, you can omit the saveenv command and the boot environment will go back to the previously saved settings on the next boot.

Reset the U-Boot Environment to Default Settings

	In order to revert the U-Boot environment back to its original settings, run the following:

Target (U-Boot)

env default -f -a
saveenv
boot

 Using the PHYTEC EEPROM Flashtool

Using the PHYTEC EEPROM Flashtool

The phyCORE-AM57x SOM offers versatility with various processor variants. The PHYTEC EEPROM Flashtool simplifies development kit evaluation by storing a SOM’s configuration in the onboard EEPROM. During boot, the configuration is read from the EEPROM, allowing a single software image to support all phyCORE-AM57x variants.

The EEPROM Flashtool uses a configuration file containing all valid SOM configuration options. This file is present by default in the root filesystem of the phyCORE-AM57x Linux BSP at /usr/bin/phytec-eeprom-flashtool/configs/PCM-057.yml. When you specify a particular SOM part number, this file is parsed for details about your SOM.

This article details the use of the PHYTEC EEPROM Flashtool for use with phyCORE-AM57x development kit.

Note

Checkout the source code for the EEPROM Flashtool [https://github.com/phytec/phytec-eeprom-flashtool]!

Does my EEPROM need to be flashed?

If you’re dealing with an unprogrammed EEPROM on your SOM, it’s crucial to flash it using the EEPROM Flashtool. Otherwise, your SOM may assume a minimal configuration, limiting access to the full RAM and other features available.

Upon the initial power-up of the development kit, the bootloader loads into memory, providing a log of information to the serial console. Checking this boot log helps identify the configuration assumed by the bootloader for your SOM.

This bootlog was captured after the EEPROM contents of a PCM-057-40300111I.A2 SOM were erased:

Target (Boot Log Example)

U-Boot SPL 2021.01-g84a5eea362 (Nov 01 2023 - 10:29:54 +0000)
DRA752-GP ES2.0
Trying to boot from MMC1
no pinctrl state for default mode
Loading Environment from FAT... no pinctrl state for default mode
OK

U-Boot 2021.01-g84a5eea362 (Nov 01 2023 - 10:29:54 +0000)

CPU : DRA752-GP ES2.0
Model: PHYTEC PCM-948 AM57x RDK
SoM: PHYTEC phyCORE-AM57x (41300111I)
DRAM: 1 GiB
MMC: no pinctrl state for default mode
Loading Environment from FAT... OK
PHYTEC: unknown board name. Defaulting to am57xx_phycore_kit, a MINIMAL AM5716 configuration
Net: eth2: ethernet@48484000
Hit any key to stop autoboot: 0

In this bootlog excerpt, it’s evident that the bootloader couldn’t determine the SOM configuration from the EEPROM’s contents. Consequently, the bootloader configures the SOM as a “MINIMAL AM5716 configuration.”

Another indication is that the bootloader sets up only 1GiB of DDR memory, whereas it is anticipated to have 2GiBs on the PCM-057-40300111I.A2 SOM.

Using the Flashtool

In the phyCORE-AM57x Linux BSP, locate the EEPROM Flashtool at /usr/bin/phytec-eeprom-flashtool/. To use it as per this guide, you need to add this location to the PATH environment variable.

	Execute the following command to add the EEPROM Flashtool directory to your PATH:

Target (Linux)

export PATH=/usr/bin/phytec-eeprom-flashtool:$PATH

	Using the EEPROM Flashtool requires knowledge of essential details about your SOM, including:

	SOM Part Number: The part number for the SOM will have to be known. For example, “PCM-057-40300111I.A2” is a valid part number. If unsure, refer to the Part Number Table [https://docs.phytec.com/latest/phycore-am57x/releasenotes/index.html#part-number-summary] in the Release Notes or contact PHYTEC Support [http://support.phytec.com/].

	SOM PCB Revision Number: The revision number for the SOM will have to be known. This number can be found directly on the SOM. For the phyCORE-AM57x the revision number can be identified by the PCB number “1428.X,” where “X” represents the revision number.

Read the SOM Configuration

The read command retrieves the EEPROM’s contents and prints them to the console based on the kit options specified in the PCM-057.yml file.

Target (Linux)

phytec_eeprom_flashtool.py read PCM-057

Write the SOM Configuration

The write command parses the kit options described by the PCM-057.yml file and writes the relevant information describing your SOM to the EEPROM.

Target (Linux)

phytec_eeprom_flashtool.py write <SOM Part Number> <SOM PCB Revision>

Display Data

The display command interprets the kit options outlined in the PCM-057.yml file and outputs the resulting EEPROM contents relevant to your SOM without making any changes to the EEPROM. This command is intended as a “dry run” for the write command.

Target (Linux)

phytec_eeprom_flashtool.py display <SOM Part Number> <SOM PCB Revision>

Advanced Usage

After programming the EEPROM with the correct options for your SOM using the EEPROM Flashtool, you can utilize the stored data to configure the board according to your preferences. Presently, PHYTEC uses the EEPROM data to configure parameters such as RAM size/timings, enable ECC support, and set the board name. Examples of how EEPROM data is utilized can be found in the uboot-phytec Git repo. The following links will provide relevant files for reference:

PHYTEC EEPROM reading and writing functions [https://github.com/phytec/u-boot-phytec-ti/blob/v2021.01_08.06.00.007-phy6/board/phytec/common/Kconfig]

RAM size, timing, ECC support detection and board detection [https://github.com/phytec/u-boot-phytec-ti/blob/v2021.01_08.06.00.007-phy6/board/phytec/phycore_am57x/phycore-am57x.c]

 Application Development

Application Development

This section of the developer wiki contains guides for common development tasks associated with writing Linux applications for the phyCORE-AM57x SOM.

Embedded application development for systems running Linux can generally be approached in two ways; Native and Cross-Platform application development.

Native application development involves writing and compiling applications directly on the system the application is intended to run. In practice, this would look like:

	Boot a PHYTEC Development Kit into Linux.

	Use Serial or SSH to gain access to the target system’s shell (a shell allows users to directly interact with an operating system via a command line interface).

	Write your application directly on the target system using text editors included within the target’s operating system distribution.

	Compile your application using a toolchain included within the target’s operating system distribution.

	Run the application directly on the target system.

Native application development is a great option for small, quick-turn prototypes or projects where you want to try out something quickly.

However, you’ll find as your projects grow in complexity that the compute resources available to your resource-constrained embedded device may be insufficient; this can culminate in projects taking a very long time to compile. Furthermore, you may find the development tools available on embedded systems to be limiting. An easy example is that you won’t have any graphical text editors available!

Cross-Platform application development generally involves leveraging a second, more powerful “Host Machine” or “Build Server” with access to greater compute resources and development tools. This might look like:

	Boot up a Linux Host Machine (A good example of this could be a x86 desktop computer with 16 cores, 32GB of RAM and operates at 5GHz+. This also could be much much more if setup in the cloud! Compare those stats to just about any embedded system and it should be clear what has the advantage).

	Install a SDK or standalone cross-compilation toolchain. Cross-compilation toolchains work on one kind of system architecture (x86 in our example), and compile applications to run on another architecture (in this case our target system would be the phyCORE-AM57x).

	Write and cross-compile the application on the Host Machine.

	Transfer the cross-compiled binary to the target system and then run it (attempting to run cross-compiled binaries on the Host Machine will not work).

Cross-compilation development environments usually take a little more work upfront to initially setup but can ultimately provide more compute resources and development tools to developers.

For a quick introduction to both methods, checkout the Hello World guide, among the others:

	Install The SDK

	Hello World

	Blink

 Install The SDK

Install The SDK

The SDK built using BSP-Yocto-AM57x-PD23.1.0 includes a cross-compilation toolchain and sysroots directory for building your applications against, allowing your software that is built on your Ubuntu Host Machine to be executed on the phyCORE-AM57x SOM. This guide walks through the installation of the SDK and how to use it to cross-compile a basic Hello World example for running on the phyCORE-AM57x‘s Cortex-A cores.

Note

This guide will walkthrough the SDK installation using a the pre-built SDK installer, but head over to the Build the BSP guide if you require building your own.

Requirements

The following system requirements are recommended to successfully install the SDK and to eventually build the BSP in its entirety. Deviations from these requirements may suffice if you don’t intend to use the same machine for building the BSP:

	Ubuntu 20.04 LTS, 64-bit Host Machine with root permission

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	100GB free disk space or greater (can be smaller if you don’t intend to build the BSP)

	8GB of RAM or greater

	4x processing cores available to the Ubuntu Host Machine or greater

	SD card reader operational under Linux

	Active Internet connection

Download the Pre-Built SDK Installer or Build it Yourself

First, navigate to a directory containing the SDK installer. If you built it yourself, it will be found at $BUILDDIR/deploy/sdk/, but the following steps will help you download a pre-built SDK:

Host (Ubuntu)

cd ~/Downloads

Use the following command to download the pre-built SDK installer to the current working directory:

Host (Ubuntu)

wget https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/sdk/yogurt/phytec-yogurt-glibc-x86_64-phytec-qt5demo-image-armv7at2hf-neon-toolchain-BSP-Yocto-AM57x-PD23.1.0.sh

Change the permissions of the installer:

Host (Ubuntu)

sudo chmod a+x phytec-yogurt-glibc-x86_64-phytec-qt5demo-image-armv7at2hf-neon-toolchain-BSP-Yocto-AM57x-PD23.1.0.sh

Run the installer:

Host (Ubuntu)

./phytec-yogurt-glibc-x86_64-phytec-qt5demo-image-armv7at2hf-neon-toolchain-BSP-Yocto-AM57x-PD23.1.0.sh

When prompted, install the SDK to the default location at /opt/yogurt/BSP-Yocto-AM57x-PD23.1.0 or, optionally, create a custom install location. This and other guides in the phyCORE-AM57x wiki will assume you installed the SDK to the default location but just remember where if you choose somewhere else.

Source the Cross-Compilation Environment

Note

Sourcing both the Yocto BSP environment and the Yocto SDK environment within the same terminal session can cause problems, it is advised to use separate terminal sessions for the two development efforts.

This script will have to be sourced in every new terminal session you plan to use for cross-platform development:

Host (Ubuntu)

. /opt/yogurt/BSP-Yocto-AM57x-PD23.1.0/environment-setup-armv7at2hf-neon-phytec-linux-gnueabi

this command is equivalent

source /opt/yogurt/BSP-Yocto-AM57x-PD23.1.0/environment-setup-armv7at2hf-neon-phytec-linux-gnueabi

Note

Remember the location of /opt/yogurt/BSP-Yocto-AM57x-PD23.1.0/environment-setup-armv7at2hf-neon-phytec-linux-gnueabi and the command you used to source it, you’ll need this handy throughout your application development!

Now you can leverage the cross-compilation toolchain in your project:

Example Output

user@ubuntu:~$ which $CC
/opt/yogurt/BSP-Yocto-AM57x-PD23.1.0/sysroots/x86_64-phytecsdk-linux/usr/bin/arm-phytec-linux-gnueabi/arm-phytec-linux-gnueabi-gcc

 Hello World

Hello World

This guide will walkthrough the creation and compilation of a Hello World executable intended to run directly on the phyCORE-AM57x Development Kit running Linux.

Native Compilation (On the Target)

Target Image Setup

By default, the BSP-Yocto-AM57x-PD23.1.0 phytec-qt5demo-image doesn’t include build tools such as gcc, make, git, etc. In order to build your applications on the target natively, these packages will have to be added to your target image first.

First, complete the setup steps outlined in the Build the BSP guide.

Once setup, modify your $BUILDDIR/conf/local.conf:

Host (Ubuntu)

vi $BUILDDIR/conf/local.conf

Add the following line to the end of the file:

$BUILDDIR/conf/local.conf

IMAGE_INSTALL_append = " packagegroup-core-buildessential"

Now rebuild your target image and then use it to boot your phyCORE-AM57x Development Kit into Linux.

Host (Ubuntu)

bitbake phytec-qt5demo-image

Write your HelloWorld Code

Let’s make a project directory to contain the Hello World source code:

Target (Linux)

mkdir ~/helloworld-project
cd ~/helloworld-project

Create the main Hello World application source code file using your favorite text editor, this guide will leverage ‘vi’ but ‘nano’ is a more beginner friendly option:

Target (Linux)

vi helloworld.c

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Edit the contents of the file to reflect the following and remember to save your changes when you are done!

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
}

Compile the project.

Target (Linux)

gcc -O helloworld.c -o helloworld

Run the binary:

Target (Linux)

./helloworld

You should see the following output:

Example Output

root@phycore-am57xx-1:~# ./helloworld
Hello World!

Cross-Compilation (On a Linux Host Machine)

Once you follow the Build the BSP guide to help you build a SDK installer (or install a pre-built one), and then run through the Install The SDK guide to install it and then source it, you can leverage the computing resources and development tools available to your Linux Host Machine to compile applications intended to run on the phyCORE-AM57x Development Kit.

Basically, you can create the helloworld.c file using the same steps above using your Linux Host Machine’s Terminal and then use the cross-compilation toolchain to compile your application to run on a different architecture (in this case it would be the ARM architecture):

Host (Ubuntu)

$CC -O helloworld.c -o helloworld

Once built, you can confirm the target architecture the binary is intended for using the ‘file’ utility:

Host (Ubuntu)

phytec@ubuntu:~$ file helloworld
hello: ELF 32-bit LSB pie executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, BuildID[sha1]=dc8a85866d965e6a45eff08156df82c14faac5db, for GNU/Linux 3.2.0, with debug_info, not stripped

You’ll notice errors if you try to run this binary on the Host Machine. Check out the Copying Files to the Device Guide to help you transfer it to the phyCORE-AM57x Development Kit such that you can execute it.

 Blink

Blink

This guide will walkthrough the native compilation of a Blink executable for the phyCORE-AM57x Development Kit running Linux. This demo will blink an LED connected to mmc3_dat0 processor pad, which is accessible at pin 29 of the X26 Expansion Connector (with net name X_MMC3_DAT0). In order for this demo to work properly we will also need to dive into configuring processor pins and the best reference for that is the Technical Reference Manual (TRM) and Datasheet for the AM57x processor, which can be downloaded from the Texas Instruments AM57x product page [https://www.ti.com/product/AM5728].

Note

This guide leverages build tools on the target (native compilation). These are not installed by default and must be first added to the target software. Checkout the Hello World guide for steps on adding this support.

Create the Blink Program

Let’s make a project directory to contain the Blink source code:

Target (Linux)

mkdir ~/blink-project
cd ~/blink-project

Create the main Blink application source code file using your favorite text editor:

Target (Linux)

vi blink.c

Note

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Pro Tip: Use the right click on your mouse to paste! This will only work if you are in “Insert Mode” first.

Edit the contents of the file to reflect the following and remember to save your changes when you are done!

blink.c

#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>

// Setup gpio6_31 (NET X_MMC3_DAT0)
#define GPIO6_ADDR_START 0x4805D000
#define GPIO6_ADDR_END 0x4805DFFF
#define GPIO6_SIZE (GPIO6_ADDR_END - GPIO6_ADDR_START)
#define GPIO6_PORT (1 << 31)
#define GPIO_DATA_OFFSET 0x00000013C
#define GPIO_DIR_OFFSET 0x000000134
#define GPIO_CLEAR_OFFSET 0x000000190

void *gpioAddress;
unsigned int *gpio_setdataout_addr;
unsigned int *gpio_direction_addr;
unsigned int *gpio_cleardata_addr;

void delay(unsigned long ms)
{
 clock_t start_ticks = clock();
 unsigned long millis_ticks = CLOCKS_PER_SEC / 1000;
 while (clock() - start_ticks < ms * millis_ticks){}
}

int main()
{
 int fd = open("/dev/mem", O_RDWR);

 gpioAddress = mmap(0, GPIO6_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, GPIO6_ADDR_START);

 close(fd);

 gpio_setdataout_addr = gpioAddress + GPIO_DATA_OFFSET;
 gpio_direction_addr = gpioAddress + GPIO_DIR_OFFSET;
 gpio_cleardata_addr = gpioAddress + GPIO_CLEAR_OFFSET;

 *gpio_direction_addr &= ~(GPIO6_PORT);

 while (1)
 {
 *gpio_setdataout_addr |= GPIO6_PORT;
 delay(1000);
 *gpio_cleardata_addr |= GPIO6_PORT;
 delay(1000);
 }
}

Compile the project using the GCC toolchain, which you had to manually add to the phytec-qt5demo-image. See the Hello World guide for more nformation.

Target (Linux)

gcc -O blink.c -o blink

You should now see an executable of the name “blink” in the current working directory.

Mux the Processor Pin

In order for this blink executable to work as intended, we will also need to multiplex (AKA mux) the processor pad such that the gpio6_31 signal is enabled and configured as an output on the mmc3_dat0 processor pad. We can do this easily using the ‘devmem2’ utility to directly access nd modify the AM57x hardware registers.

Warning

Use caution when working with the ‘devmem2’ utility as it gives you direct access to read and write to memory that could render the system unstable if you modify memory that is being actively used. This utility has no error checking and shouldn’t be relied upon in production software. PHYTEC recommends working with ‘devmem2’ only while prototyping and transitioning your pin settings to the linux device tree for production.

	First, identify the processor pad that brings out the signal we are targeting. This can be done by following X_MMC3_DAT0 in the carrier board schematic back to the SOM and to the AM57x processor itself. You should find that this signal is accessible at the processor ball number AC7, named mmc3_dat0.

	Looking up the mmc3_dat0 processor pad within the AM57x Datasheet, we can see that this pad is configured within the CTRL_CORE_PAD_MMC3_DAT0 register which has the memory address 0x4A003784.

	We can read this register like so:

Target (Linux)

devmem2 0x4A003784

	We should see the following output by default:

Example Output

root@phycore-am57xx-1:~# devmem2 0x4A003784
/dev/mem opened.
Memory mapped at address 0xffff9fc5f000.
Read at address 0x4A003784 (0xffff9fc5f084): 0x00060000

	The value held in the CTRL_CORE_PAD_MMC3_DAT0 memory address is 0x00060000, which can be broken down according to the CTRL_CORE_PAD_MMC3_DAT0 Register Field Descriptions within the TRM (see Table 18-1611). Here we can see that the register is configured as an input, with an internal pull-up enabled, and is in mux mode 0 which is mmc3_dat0. This is not the direction or mux mode we need for driving an LED so it will need to be changed.

	Modify the CTRL_CORE_PAD_MMC3_DAT0 register in order to configure the mmc3_dat0 as the desired GPIO mux mode we need (gpio6_31):

Target (Linux)

devmem2 0x4A003784 w 0x0000000e

Writing the value 0x0000000e to CTRL_CORE_PAD_MMC3_DAT0 effectively changes the pad config settings, giving us the signal we want in the mode we need.

Run the Blink Program

Once you have the blink executable built and the processor pin is correctly multiplexed to bring out the signal gpio6_31 as an output, we can connect up an LED to X_MMC3_DAT0 and blink it!

Reference the following circuit diagram to help you connect up an LED to pin 29 of the X26 Expansion Connector on the phyCORE-AM57x Development Kit carrier board:

[image: Example circuit for blinking an LED connected to the phyCORE-AM62x Development Kit.]
Now run the blink executable and watch the LED blink on and off!

Target (Linux)

./blink

To end the program, use Ctrl + C.

 Building the BSP

Building the BSP

This section of the developer wiki contains guides for common Board Support Package (BSP) development tasks. These common tasks relate to modifying the standard development kit’s software as well as modifying the BSP to add support for custom systems built around the phyCORE-AM57x SOM.

As for suggested workflow, most developers working with PHYTEC SOMs will want to start in one of these two ways:

	Generally, the best place to start is to Build the BSP in its entirety. Doing so will build the bootloader, kernel, rootfilesystem, and many utilities that make up the base Linux distro. Building the BSP gives you access to the source code for all of these components and can serve as a starting point for generating customized production software images.

	If you only need to modify the kernel, you can do so by following the Standalone Kernel Development guide in order to leverage a pre-built SDK to build and then modify your Linux kernel independently. This is much faster than building the BSP in its entirety (you can eventually just export your changes as patches that the BSP can then apply automatically when you are ready).

	Build the BSP

	Modify The BSP

	Create a Custom Meta-Layer

	Standalone Kernel Development

 Build the BSP

Build the BSP

PHYTEC’s Linux BSPs are built using The Yocto Project, which is a powerful tool that allows OEMs to create production ready software images for custom hardware built around the phyCORE-AM57x System on Module (SOM). Depending on the needs of your end application and the design of your system, you will require custom modifications to the Linux kernel and/or the packages included in the root filesystem. The Yocto Project is one way to manage those changes.

This guide will walk through the setup and build process of the Yocto BSP in order to generate default software images for the phyCORE-AM57x development kit. Once the BSP is built, it can serve as a starting point for product development.

If you don’t need to build custom software images, or just want to quickly evaluate the default phyCORE-AM57x development kit out-of-the-box, feel free to download a Pre-Built Image instead. These can be found on the Pre-Built Binaries page.

Requirements

The following system requirements are necessary to successfully follow this BSP Development Guide. Deviations from these requirements may or may not have other workarounds:

	Ubuntu 20.04 LTS, 64-bit Host Machine with root permission.

	If using a virtual machine, VMWare Workstation, VMWare Player, and VirtualBox are all viable solutions.

	At least 100GB disk space free

	At least 8GB of RAM

	At least 4x processing cores available to the Host Machine

	Active Internet connection

The above minimum build resources (RAM/CPUs) should result in a build time of ~3.5 hours.

Host Setup

Yocto development requires certain packages to be installed on the host machine to satisfy various dependencies. Run the following commands to ensure these are installed:

Host (Ubuntu)

sudo apt-get update
sudo apt-get install build-essential autoconf automake bison flex libssl-dev bc u-boot-tools python diffstat texinfo gawk chrpath dos2unix wget unzip socat doxygen libc6:i386 libncurses5:i386 libstdc++6:i386 libz1:i386 g++-multilib git python3-distutils

PHYTEC’s phyLinux script (used further down in this guide for setting up the BSP) requires that python be aliased to python3 specifically. Ubuntu 20.04 will have python=python2 by default so we must also make changes to satisfy this dependency:

Host (Ubuntu)

which python # confirm where python is installed, should return “/usr/bin/python”
ls -l /usr/bin/python* # 'python' is a symlink to python2 in ubuntu 20.04, this needs to be updated to python3

create new symlinks in /usr/local/bin/ to override (this is higher up in $PATH)
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python2.7 2
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.8 3 # set python3 with higher priority

source /etc/environment # source new terminal environment for the change to take effect

python --version # should return "python3.x" now

Git Setup

If you have not yet configured your git environment on the Host Machine, please execute the following commands to set your user name and email address:

Host (Ubuntu)

git config --global user.email "your@email.com"
git config --global user.name "Your Name"
git config --global http.sslcainfo /etc/ssl/certs/ca-certificates.crt

Note

New to git? See here for more information about getting started with git: https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

Yocto Build Steps

Firstly, dedicate a directory on your Host Machine for housing the BSP and navigate there:

Host (Ubuntu)

mkdir ~/BSP-Yocto-AM57x-PD23.1.0
cd ~/BSP-Yocto-AM57x-PD23.1.0

Download the BSP Meta Layers

Yocto based Linux BSPs are comprised of many meta-layers, each containing recipes for fetching, building and packaging various components destined for the bootable software image you intend to build. Some meta-layers are provided by the Linux community, such as meta-python for example. Other meta-layers are more platform specific and are made available by PHYTEC or the silicon vendor (in the case of the phyCORE-AM57x, the silicon vendor is Texas Instruments). All the meta-layers required for this PHYTEC Linux BSP can be setup using the phyLinux tool:

Host (Ubuntu)

wget https://download.phytec.de/Software/Linux/Yocto/Tools/phyLinux
chmod +x phyLinux
./phyLinux init

The above will launch an interactive session that walks you through the BSP setup. Use the following guide to help you navigate through the interactive prompts:

phyLinux Interactive session

SoC Platform : am57x
Release : BSP-Yocto-AM57x-PD23.1.0
MACHINE : phycore-am57xx-1

Note

Each MACHINE configuration will correspond to a specific SOM variant (phyLinux also combines the supported Target Linux Distributions with the MACHINE options), be sure you select the appropriate option for the hardware you have.

Initialize the BSP Environment

Source the build environment (a build directory and the $BUILDDIR environment variable will be automatically setup):

Host (Ubuntu)

source sources/poky/oe-init-build-env

Configure the Build

The default build configuration is automatically setup based on your phyLinux selections so changing it is not required, but we’ll go over some key parts of it together here in this section of the guide.

Open the build’s configuration file using your favorite text editor. This guide will use ‘vi’ in order to modify the file directly in the terminal:

Host (Ubuntu)

vi conf/local.conf

Note

vi/vim is perhaps the most popular command line text editor in Linux but it’s not the only way to modify text files. You could also try ‘nano’, which is a little more beginner friendly.

The vi text editor begins in “Command Mode” and you must first hit the ‘i’ key in order to enter “Insert Mode”. Using the arrow keys to navigate, make the necessary changes and then hit ESC to go back to “Command mode”. Now enter “:wq” to write the file and quit.

Optionally modify conf/local.conf after considering the following:

	The MACHINE variable being set in the conf/local.conf is used to define the machine configuration the software image will be built for, these typically correlate directly to a PHYTEC kit part number. See the Release Notes for an overview of the supported MACHINEs in the BSP-Yocto-AM57x-PD23.1.0 release.

	Once you have built a custom carrier board around the phyCORE-AM57x SOM, you can consolidate your modifications to your own custom meta-layer and build images for that system via a custom MACHINE configuration you can define yourself.

	The variables BB_NUMBER_THREADS and PARALLEL_MAKE can be used to limit the maximum number of parallel tasks and threads used by the build system. By default, these variables are not defined so Yocto will determine the resources available on the host and use them all.

	Depending on your usage of the Host Machine, you may decide that it is best to limit the compute resources available to the build system and you can do this by adding the following to the conf/local.conf:

Optional code for conf/local.conf

Parallelism options - based on cpu count
BB_NUMBER_THREADS ?= "4"
PARALLEL_MAKE ?= "-j 4"

	Remember to save any changes you do end up making before closing the build configuration file.

Start the Build

Use the following commands to navigate to the build directory (you should have been automatically placed there when you sourced the build environment) and start the build process for the phyCORE-AM57x Linux BSP:

Host (Ubuntu)

cd $BUILDDIR
bitbake phytec-qt5demo-image

This command instructs bitbake to run all the tasks associated with the phytec-qt5demo-image build target, which is the default image used by PHYTEC to validate the BSP-Yocto-AM57x-PD23.1.0 release.

Note

Depending on the resources available on the Host Machine, this build process can take a long time to complete the first time. Subsequent builds introducing incremental changes can be completed MUCH faster because the build system can intelligently re-build only what is necessary.

Ideally, the BSP is built on a dedicated build server with a high core/thread count and a lot of RAM.

Components of a Built BSP

All generated images deployed during the build can be found in the $BUILDDIR/deploy/images/phycore-am57xx-1/ directory.

Note

	Technically, images built for a given MACHINE configuration are deployed to $BUILDDIR/deploy/images/<MACHINE>/ If you followed this guide exactly then MACHINE should have been set to phycore-am57xx-1, which corresponds to the standard phyCORE-AM57x Development Kit configuration.

	The SD Card image is a complete software image intended to be flashed directly to an SD Card, it therefore already contains your bootloader binaries, kernel images and root file system. These individual components are also deployed so that you can update/evaluate them individually throughout your development. To get started, you only need the SD Card image.

Deployed Artifacts

	
	Filename

	Details

	SD Image

	phytec-qt5demo-image-phycore-am57xx-1.wic.xz

	Complete SD Card image in compressed format, can be flashed directly to boot media once uncompressed.

	Bootloader

	tiboot3.bin

	The first bootloader image, loaded by the boot ROM, contains both the Device Management & Security Controller (DMSC) firmware and the Cortex-R5F Secondary Bootloader (SBL).

	Bootloader

	tispl.bin

	The second bootloader image, loaded by the R5 SBL, contains the ARM Trusted Firmware (ATF), Open Portable Trusted Execution Environment (OPTEE) and the Cortex-A53 SBL.

	Bootloader

	u-boot.image

	Bootloader for Cortex-A53 Linux and for other software destined for the Cortex-R5F cores.

	Kernel

	Image

	Linux Kernel Binary

	Kernel Device Tree Blobs and Overlays

	am5728-phytec-pcm-948-40300111I.dtb

	Base Kernel Device Tree Blob (DTB)

	Root filesystem

	phytec-qt5demo-image-phycore-am57xx-1.tar.xz

	Compressed root filesystem

Source Locations

During the build process, the source repositories for all the individual components that make up the SD Card image are unpacked locally in the build directory. The kernel and bootloader sources, for example, can be found at the following locations:

Kernel: $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/linux-ti/5.10.168-phy7-r0.0/git/

	The main device tree file for the phyCORE-AM57x development kit within the Linux kernel source: arch/arm/boot/dts/am5728-phytec-pcm-948-40300111I.dts

	The phyCORE-AM57x kernel defconfigs can be found at: arch/arm64/configs/

U-Boot: $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/u-boot-ti/1_2021.01+gitAUTOINC+84a5eea362-r0/git/

	Board file is located at: board/phytec/phycore_am57x/phycore-am57x.c

	Device tree file: arch/arm/dts/am57xx-phytec-pcm-948.dts

Building the SDK Installer

Once you have successfully followed the steps outlined above for building the BSP, you can leverage the same build system to similarly build a SDK installer to begin application development in a cross-platform environment.

Build the SDK installer:

Host (Ubuntu)

bitbake phytec-qt5demo-image -c populate_sdk

The SDK installer will be deployed to $BUILDDIR/deploy/sdk. For more information on setting up and using the SDK, head over to the Application Development section of the wiki.

Note

For technical support, please visit PHYTEC’s Support Portal [http://support.phytec.com/]!

 Modify The BSP

Modify The BSP

There can be a significant learning curve to working with The Yocto Project and this guide will serve as a resource for developers to quickly test changes to the BSP. After working through this guide, you should be able to comfortably navigate the BSP and manually introduce custom modifications on-top of it in order to evaluate the interfaces and functionality required by your custom application.

Note

In order to follow this guide, you must have first built the BSP in its entirety and have your BSP environment initialized. Checkout the Build the BSP guide if you haven’t yet!

The built BSP has two primary directories at its root and these are the /sources and /build directories. These two directories are significant and here is a summary of why (the paths here may be slightly different for you if you deviated from the instructions):

	~/BSP-Yocto-AM57x-PD23.1.0/sources - This directory contains meta-layers. Meta-layers are repositories that contain instructions for fetching, building and deploying certain software packages (those instructions are referred to as recipes). Layers can also contain instructions for changing recipes and settings introduced by other layers. This powerful override capability is what allows you to customize the supplied meta-phytec or community layers to suit your product requirements. The instructions included in meta-layers are typically referred to as recipes.

	~/BSP-Yocto-AM57x-PD23.1.0/build - This directory is used by the build system during the build process and is generally referred to as $BUILDDIR in the documentation (which is a handy environment variable that gets exported automatically when you source the build environment). Packages called for by the build target, as defined by their recipes are fetched, unpacked, compiled and staged for deployment here.

Note

It is important to distinguish between modifying the local sources of a particular package and modifying the recipe for a given package!

If you are new to working with The Yocto Project, then the Yocto Project Overview and Concepts Manual [https://docs.yoctoproject.org/3.1.27/overview-manual/overview-manual.html] will be a good document to read through to get a high level understanding of what is going on. The Yocto Project Reference Manual [https://docs.yoctoproject.org/3.1.27/ref-manual/ref-manual.html] is the best resource for in-depth documentation regarding directory structure, recipes, tasks, and other aspects of actually working with the BSP’s build system.

Adding Packages to the BSP

The best way to see what packages are available on the target image is to check the image manifest, which is a file that is deployed along with the phytec-qt5demo-image build target. Use the following to open this file:

Host (Ubuntu)

vim $BUILDDIR/deploy/images/phycore-am57xx-1/phytec-qt5demo-image-phycore-am57xx-1.manifest

If there is a package that you need that wasn’t included in the target image by default, then you should first check if the package was included in the build tree.

Host (Ubuntu)

cd $BUILDDIR

#lists all available packages
bitbake -s

#search for specific packages by name
bitbake -s | grep <package name>

If the package you need is listed then you can add the package to the image by simply adding the following line to the end of your build’s conf/local.conf file:

conf/local.conf

IMAGE_INSTALL_append = " <package name1> <package name2>"

Adding these packages to the target image by way of the conf/local.conf file is some-what of a temporary way to introduce packages, and you will eventually add these in a more permanent way in your custom meta layer using a machine or distro configuration file (depending on which is more appropriate).

Note

The IMAGE_INSTALL variable can hold a space separated list of packages you wish to add to the default BSP. Note that the leading space in the list is necessary when appending to it!

If the package you need is not listed, then this means that PHYTEC did not include the support for the recipe in the build tree by default. If this is the case, you may need to find a community layer which introduces the recipe/package you need or create your own. Community layers can be searched on the Open Embedded Layer Index [http://layers.openembedded.org/layerindex/branch/dunfell/layers/], just make sure you are searching the correct Yocto version for your BSP, BSP-Yocto-AM57x-PD23.1.0 uses Yocto 3.1.27 Dunfell.

Note

Adding meta-layers to the BSP that aren’t included in the build tree by default is discussed in the Create a Custom Meta-Layer guide.

Modify the Kernel Config

The BSP’s build system also includes kernel development tasks for interacting with the Linux kernel’s own menuconfig tool, which is a graphical tool for configuring the driver support included in the kernel.

In order to launch menuconfig, you’ll need these additional Host dependencies:

Host (Ubuntu)

sudo apt-get install libncurses5-dev libncursesw5-dev

Launch the menuconfig tool with the following command:

Host (Ubuntu)

bitbake linux-ti -c menuconfig

Once menuconfig launches, you can navigate the available configuration options using the arrow keys on your keyboard to enable or disable support as required.

[image: Image of the Linux Kernel's MenuConfig utility for customizing driver support]
Remember to save any changes to the kernel configuration to a .config file before exiting menuconfig.

The .config used by the build system can be found at $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/linux-ti/5.10.168-phy7-r0.0/build/.config and you could back this up to a safe location outside of the BSP to eventually define your defconfig in your custom meta layer like so:

Host (Ubuntu)

cp $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/linux-ti/5.10.168-phy7-r0.0/build/.config ~/.config

Note

Files that start with a ‘.’ are typically hidden in the filesystem. If you are having trouble seeing the .config file then try the following command to list everything (including hidden files) in the directory you are searching:

Host (Ubuntu)

ls -a <path to .config>

Feel free to open the .config file with a text editor to verify that your change made it there. You’ll notice that the previous and original .config files are also backed up, which you could diff against to see what has changed.

Once you have saved your changes to the .config using the menuconfig utility, you can force bitbake to re-compile just the kernel to make those changes take a effect:

Host (Ubuntu)

cd $BUILDDIR
bitbake linux-ti -c compile --force && bitbake linux-ti -c deploy --force

The do_deploy task follows the do_compile task and both must be run in order to update the binaries in your deploy directory with the changes. In order for the change to also make its way into the overall target image:

Host (Ubuntu)

bitbake phytec-qt5demo-image

Modify the BSP’s Kernel Source Directly

Once the BSP is built the first time, you will have access to deployed binaries as well as the local sources that were used to build them. It is possible to make changes to these local sources and re-compile them directly in the BSP. This guide will use the linux-ti package as an example but the information outlined here will be applicable to other packages such as the bootloader and others too.

Warning

The Yocto Project isn’t really intended for serious development of the individual packages called for by the recipes in the BSP’s meta-layers, it’s really meant to generate production-ready images. If you are considering significant modifications to the Linux kernel (perhaps you need to port an upstream driver), you are better off cloning the kernel repo independently, outside the scope of the Yocto BSP to focus on that development alone first with a Cross-Compilation toolchain, see Standalone Kernel Development for more information. Once major changes for a package are finalized, a new recipe-append can be created that extends the existing kernel recipe in the BSP and just applies your changes as a set of patches to the base package or just pulls from your own repo and preferred commit ID. Checkout the Standalone Kernel Development guide for more information on this.

Changes made directly to the local sources of a package should not be considered permanent, they can be easily destroyed if the package is cleaned and re-fetched by the build system.

The goal of this guide is to provide you with a way to perform quick and informal changes to the kernel or other packages for testing on the phyCORE-AM57x development kit. This is handy if you need to quickly enable a driver or GPIO instance and you already have the BSP built, for example.

This section of the guide won’t focus on applying changes to the BSP components in the “correct way” by use of a custom meta-layer. For instructions on that process, checkout the Create a Custom Meta-Layer guide when you are ready to begin consolidating all your changes to the stock BSP.

Change the Linux Kernel Device Tree

Let’s try making a small change to the kernel’s device tree and enable a heartbeat LED using the User LED1 (D1) to let us know that the system is alive automatically upon boot (this User LED1 is automatically on by default, checkout the GPIO guide to learn more about controlling it as-is):

[image: phyCORE-AM57x User LEDs]
Use your favorite text editor to open the device tree file corresponding to the phyCORE-AM57x development kit’s carrier board:

Host (Ubuntu)

vi $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/linux-ti/5.10.168-phy7-r0.0/git/arch/arm/boot/dts/am57xx-pcm-948.dtsi

Edit the file according to the following diff:

Device Tree Diff

...
 led-1 {
 label = "pcm-948:led1";
 gpios = <&gpio1 28 GPIO_ACTIVE_HIGH>;
- linux,default-trigger = "mmc1";
+ linux,default-trigger = "heartbeat";
 };

 led-2 {
...

This diff outlines changes to the User LED device node. Essentially, we are changing the default trigger for the LED to “heartbeat” in order to configure it to blink with a heartbeat pattern by default (useful for knowing if the SOM is booted into Linux or not).

Force the Change to Get Compiled

When testing changes applied directly to the build’s local sources (in $BUILDDIR/tmp/work/), the build system will not automatically detect that the local source has changed unless you specifically instruct the build system to recompile it first. This means that you can’t just modify the kernel source at $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/linux-ti/5.10.168-phy7-r0.0/git/ and expect the build system to automatically take the change into account the next time phytec-qt5demo-image is built.

The following command should be used after applying some change directly to the local kernel source in the $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/linux-ti/5.10.168-phy7-r0.0/git/, such as we did above when we added the code to enable the heartbeat LED:

Host (Ubuntu)

cd $BUILDDIR
bitbake linux-ti -c compile --force && bitbake linux-ti -c deploy --force

Once the kernel is forcefully recompiled and deployed independently, you can re-deploy it as a part of the overall target image:

Host (Ubuntu)

bitbake phytec-qt5demo-image

Using the newly deployed image to boot the phyCORE-AM57x development kit should quickly confirm that the User LED1 is blinking and that the kernel modification was successfully applied.

Save the Change

Keep in mind that manual changes applied directly to the sources in $BUILDDIR/tmp/work/ are temporary since they aren’t being tracked by the build system yet (the changes will be destroyed upon “cleaning” the package, see below for more information). For this section of the guide, we will assume you made some kernel change (such as the heartbeat LED change demonstrated above) and that you are satisfied enough with the change that you would like it to apply it automatically to the BSP whenever it is built.

The first thing to do is to export the change as a patch file. To do this, navigate to the package repository you modified:

Host (Ubuntu)

cd $BUILDDIR/tmp/work/phycore_am57xx_1-phytec-linux-gnueabi/linux-ti/5.10.168-phy7-r0.0/git/

Before actually creating the patch, you may want to review the changes made to the repository to ensure everything is as you expect it. Use git to do this:

Host (Ubuntu)

git diff
git status

Export a patch file based on the current changes applied on-top of the base kernel and save it to a safe location outside the BSP (such as your home directory):

Host (Ubuntu)

git diff > heartbeatD1.patch && cp heartbeatD1.patch ~

Patch files work best when they capture changes that are very specific in their purpose. For example, instead of having one “mega” patch that enables all the unique features of your custom system, break up your customizations such that each patch is responsible for a specific interface or driver. This will make maintaining your meta-layer much easier later on.

Note

Eventually, you will have a set of patches that modify the functionality of the phyCORE-AM57x SOM in a way that is specific to your application requirements and the design of your custom carrier board (if applicable). This collection of patches should eventually be consolidated into a custom Meta-Layer specific to your system and added in a modular way to the BSP. Checkout the Create a Custom Meta-Layer guide when you are ready to begin finalizing your production image.

Clean Packages

When testing changes, it will be necessary to get back to a known working-starting point at some time or another. To do this, all recipes have a do_clean task defined that instructs the build system to delete all the unpacked sources for a given target (including the changes manually applied there). The next time the same package is built, it will be re-unpacked from the cached source tarball which effectively reverts your changes back to their original BSP defaults.

Clean the package:

Host (Ubuntu)

bitbake linux-ti -c clean

Alternatively, the do_cleanall task will delete the unpacked sources AND the cached source tarball. Running the ‘cleanall’ task on a package will require the package sources to be re-fetched on the next build.

Modifying the BSP Sources With ‘devtool’

Modifying the sources directly in the build directory (such as at the source locations described above) is a viable way to test small changes to your target software. In order to do that, you just have to force bitbake to re-run the do_compile and do_deploy tasks for the changed package since the build system won’t know that you changed any sources. One thing to note about this method is that the changes are volatile in that if you clean and rebuild any component of a software image, the changes you have in place will be destroyed (this is because the sources are re-fetched and then re-compiled).

A better method for reliably testing, tracking and incorporating incremental changes to any component or package called for within a Yocto based BSP is to leverage devtool. Devtool can be used to setup workspace environments (that persist between cleans) that allow you to modify components, here is an example:

	Run the following to modify the Linux kernel used in PHYTEC’s BSP-Yocto-AM57x-PD23.1.0 release:

Host (Ubuntu)

devtool modify linux-ti

You should now see a new ‘workspace’ directory at $BUILDDIR/workspace, this is a workspace meta-layer that is automatically enabled within the BSP’s active layers (listed in conf/bblayers.conf). Changes can be made directly to the linux-ti source at $BUILDDIR/workspace/sources/linux-ti and this directory will automatically be used whenever linux-ti is re-built using bitbake. From here, you could use git to add a remote repository to push changes to and you could export patches for incorporation into your own meta-layer.

Note

devtool is a good method for modifying individual packages called for in a BSP but it still introduces a lot of overhead since you have to leverage the entire Yocto build system (which is best suited for generating production-ready disk images) to iterate changes on individual packages. When applicable, it is better to install a compatible cross-compilation toolchain and perform development on the individual packages, outside of Yocto, to further accelerate development. Checkout the Standalone Kernel Development guide for an example of doing this with the Linux kernel (you can generate your patches faster this way throughout development).

 Create a Custom Meta-Layer

Create a Custom Meta-Layer

At some point during application development it will become advantageous to consolidate the changes you made to the stock BSP into a meta layer in order to have them applied automatically by the build system. This makes it easier to reproduce the production image in new build environments and also allows you to version control your changes to the BSP, since meta layers are themselves repositories. As PHYTEC comes out with new BSP releases over time to improve our products, having your changes all in one meta layer also makes it easier to upgrade to the latest BSP and kernel when your development allows.

Note

In order to follow this guide, you must have first built the BSP in its entirety and have your BSP environment initialized. Checkout the Build the BSP guide if you haven’t yet!

bitbake-layers Tool

The easiest way to introduce new meta layers to the build system is by leveraging the bitbake-layers tool from the poky distribution of The Yocto Project:

Example Output

phytec@ubuntu2004:~/BSP-Yocto-AM57x-PD23.1.0/build$ bitbake-layers -h
NOTE: Starting bitbake server...
usage: bitbake-layers [-d] [-q] [-F] [--color COLOR] [-h] <subcommand> ...

BitBake layers utility

optional arguments:
 -d, --debug Enable debug output
 -q, --quiet Print only errors
 -F, --force Force add without recipe parse verification
 --color COLOR Colorize output (where COLOR is auto, always, never)
 -h, --help show this help message and exit

subcommands:
 <subcommand>
 show-layers show current configured layers.
 show-overlayed list overlayed recipes (where the same recipe exists in another layer)
 show-recipes list available recipes, showing the layer they are provided by
 show-appends list bbappend files and recipe files they apply to
 show-cross-depends Show dependencies between recipes that cross layer boundaries.
 layerindex-fetch Fetches a layer from a layer index along with its dependent layers, and adds them to conf/bblayers.conf.
 layerindex-show-depends
 Find layer dependencies from layer index.
 add-layer Add one or more layers to bblayers.conf.
 remove-layer Remove one or more layers from bblayers.conf.
 flatten flatten layer configuration into a separate output directory.
 create-layer Create a basic layer

Use bitbake-layers <subcommand> --help to get help on a specific command

Check Existing Layers

Before creating a new layer, you should be sure someone in the Yocto community hasn’t already created a layer containing the metadata you need. You can see the Open Embedded Layer Index [http://layers.openembedded.org/layerindex/branch/dunfell/layers/] for a list of layers from the OpenEmbedded community that can be used with the Yocto Project.

Note

Not all community layers are going to be compatible with the phyCORE-AM57x, the AM57x soc, or the BSP-Yocto-AM57x-PD23.1.0 (this may or may not have workarounds however).

If you are familiar with Yocto and have used the workflow for a previous project, perhaps you already have a meta layer setup. In either case, you should find the repo URL of the meta layer and clone it locally to your Host Machine:

Host (Ubuntu)

cd $BUILDDIR/../sources
git clone <meta layer URL>

You’ll also want to ensure that the appropriate branch of the layer is checked out, if applicable.

Note

This guide we will work through an example by creating a meta-custom layer but the commands here should still serve as a reference for when working with existing meta layers you manually cloned to the local file system.

Create a Layer

Use the following command to create a new meta layer from scratch, named ‘meta-custom’:

Host (Ubuntu)

cd $BUILDDIR
bitbake-layers create-layer $BUILDDIR/../sources/meta-custom

Note

It is not a requirement that a layer name begin with the prefix meta-, but it is a commonly accepted standard in the Yocto Project community.

The bitbake-layers create-layer command sets up an example meta layer and automatically populates it with configuration information and an example recipe.

Add Layers

Now that you have a meta layer (or perhaps you manually cloned an existing layer from the OpenEmbedded Layer Index), we can enable it in the build system:

Host (Ubuntu)

bitbake-layers add-layer $BUILDDIR/../sources/meta-custom

You have officially added a custom meta layer to the BSP! Congratulations! At this point, the best resource for further customizing this meta layer according to the specific needs of your project is to work through The Yocto Project Development Tasks Manual [https://docs.yoctoproject.org/3.1.27/dev-manual/dev-manual.html] and The Yocto Project Board Support Package Developer’s Guide [https://docs.yoctoproject.org/3.1.27/bsp-guide/bsp-guide.html]. We know that its a lot of manuals!

Note

Remember, you can always ask questions in PHYTEC’s Support Portal [http://support.phytec.com/]! We want your projects to succeed!

Extend a Recipe

As an exercise, we will extend the default kernel recipe and add the heartbeat LED modification we did in the Modify The BSP guide so that it can be automatically applied when the BSP is built. In order to follow this section of the guide you will need that patch file we generated so you can either create it yourself or download it in the steps below.

First, lets navigate into the meta-custom layer we created above:

Host (Ubuntu)

cd $BUILDDIR/../sources/meta-custom

Note

A handy command to view the structure of a directory is tree, install it with the following command:

Host (Ubuntu)

sudo apt-get install tree

Once tree is installed, use it to view the directory recursively!

Example Output

phytec@ubuntu2004:~/BSP-Yocto-AM57x-PD23.1.0/sources/meta-custom$ tree
.
├── conf
│ └── layer.conf
├── COPYING.MIT
├── README
└── recipes-example
 └── example
 └── example_0.1.bb

3 directories, 4 files

Linux Kernel recipes by convention should reside in recipes-kernel/linux so we need to change some directories to conform to this convention:

Host (Ubuntu)

mv recipes-example/ recipes-kernel
mv recipes-kernel/example/ recipes-kernel/linux

We also need to change the example recipe to a recipe extension, so that it is applied on-top of an existing recipe. Since we know that the active kernel recipe in BSP-Yocto-AM57x-PD23.1.0 is linux-ti_5.10.168-phy7.bb, we can extend it by changing the example recipe like so:

Host (Ubuntu)

mv recipes-kernel/linux/example_0.1.bb recipes-kernel/linux/linux-ti_%.bbappend

Now the build system will know that this recipe needs to be applied to the corresponding .bb file of the same name (the ‘%’ symbol acts as a version wildcard).

Open the .bbappend file using your favorite text editor:

Host (Ubuntu)

vim recipes-kernel/linux/linux-ti_%.bbappend

Modify the contents of the .bbappend file to reflect the following:

recipes-kernel/linux/|kernel-package|_%.bbappend

require conf/machine/phycore-am57xx-1.conf

COMPATIBLE_MACHINE = "phycore-am57xx-1"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-customPatches:"

SRC_URI += " file://heartbeatD1.patch"

In the .bbappend file, we are instructing to the build system that this recipe extension is compatible with our target MACHINE configuration, the phyCORE-AM57x development kit, and it adds to some key variables the build system uses when processing a package. FILESEXTRAPATHS is the search path the build system uses when looking for files and patches as it processes recipes and append files. SRC_URI lists the actual names of files we want grabbed out of these locations, and in the case of patch files, they will all be automatically applied during the do_compile task.

As the .bbappend suggests, we also need to add our patch file the meta layer, named heartbeatD1.patch here. This guide assumes you backed it up to the home directory as instructed in the Modify The BSP guide.

Create the directory called for in the .bbappend file and copy the patch there:

Host (Ubuntu)

mkdir recipes-kernel/linux/linux-ti-customPatches
cp ~/heartbeatD1.patch recipes-kernel/linux/linux-ti-customPatches

Now your patch should get automatically applied every time the kernel is built.

Clean and rebuild the kernel, and then also rebuild the overall target image to update all the files in your $BUILDDIR/deploy directory:

Host (Ubuntu)

bitbake linux-ti -c clean && bitbake linux-ti && bitbake phytec-qt5demo-image

 Standalone Kernel Development

Standalone Kernel Development

Building the BSP in its entirety has a fairly large learning curve and significantly larger system requirements on the Host Machine when compared to building just the individual components of the image. For these reasons (and others), the Yocto Project can be very cumbersome to use as your primary means of developing things like the Linux kernel by itself. When possible, it is best to clone the kernel repo independently of the overall BSP in order to customize it for your application requirements and export your changes back into the BSP to include them into your production image.

The goal of this guide is to provide you with a quick reference for setting up and building the stock BSP-Yocto-AM57x-PD23.1.0 kernel independently, without The Yocto Project. This can then serve as a starting point for kernel development.

Note

Eventually, you will have a set of patches that modify the Linux kernel such that phyCORE-AM57x SOM is able to meet your unique application requirements. This collection of patches should eventually be consolidated into a custom Meta-Layer specific to your system and added in a modular way to the BSP so that they are incorporated into the production-ready software image automatically. Checkout the Create a Custom Meta-Layer guide when you are ready to begin finalizing your production image.

Requirements

In order to build the kernel repository independently of the overall BSP, you will need to install a compatible toolchain for the phyCORE-AM57x.

	A toolchain is conveniently included in the pre-built SDK so head over to the Install The SDK guide and run through those steps first if you haven’t already done so.

	Remember to source the cross-compilation environment before attempting to build the kernel. You’ll have to do this with every nw terminal session, even if you have previously installed the SDK. You can’t complete this guide without first doing so.

Clone the Linux kernel

Clone the PHYTEC kernel repository using the release tag corresponding to the BSP version:

Host (Ubuntu)

cd ~
git clone -b v5.10.168-phy7 https://github.com/phytec/linux-phytec-ti.git
cd linux-phytec-ti

If you plan to use menuconfig to customize your kernel configuration, you’ll need the following additional Host dependencies:

Host (Ubuntu)

sudo apt-get install libncurses5-dev libncursesw5-dev

Make

The kernel build system leverages various environment variables and makefiles to build the kernel and it’s components for a specific target architecture. Reference the following commands when building for the phyCORE-AM57x:

Host (Ubuntu)

configure the kernel build system to use PHYTEC's provided kernel configuration for the default phyCORE-AM57x development kit
make phytec_ti_defconfig phytec_ti_platform.config

make kernel configuration changes (enable/disable drivers)
make menuconfig

save the kernel configuration from .config to a file named "defconfig"
make savedefconfig

build everything (Image, DTB, kernel modules, etc):
make

install kernel modules to the mounted bootable SD Card
sudo make INSTALL_MOD_PATH=/media/user/root/ modules_install

The new Image kernel binary can be found at arch/arm/boot/Image and the device tree blobs (and overlays) can be found at arch/arm/boot/dts/ti/.

For installing the new kernel image and device tree files, head over to the SD Card guide.

 Pre-Built Binaries

Pre-Built Binaries

Note

The pre-built binaries available for download on this page reflect the default phyCORE-AM57x Development Kit configuration: KPCM-057-Lin

For a complete view of all available pre-built images please visit PHYTEC’s download server:

BSP-Yocto-AM57x-PD23.1.0 [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-1/]

For an overview of all SOM/Development Kit configurations supported in this Release, checkout the Release Notes.

Download Link for the Complete, Prebuilt SD Card Image

Download the SD Card Image - phytec-qt5demo-image-phycore-am57xx-1.wic.xz [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-1/phytec-qt5demo-image-phycore-am57xx-1.wic.xz]

You’ll need the .wic.bmap file to flash SD Cards using the bmaptool utility.

Download the SD Card bmap - phytec-qt5demo-image-phycore-am57xx-1.wic.bmap [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-1/phytec-qt5demo-image-phycore-am57xx-1.wic.bmap]

Note

The files below are already contained within the SD Card Image. When the SD Card image is flashed to a disk; the first partition is a boot partition containing the U-Boot Bootloader and Linux kernel binaries, and the second is the root partition containing everything else.

Download Links for Individual Pre-Built Image Components

Download the First Stage Bootloader - MLO [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-1/MLO] Download the Primary Bootloader - u-boot.img [https://download.phytec.de/Software/Linux/BSP-Yocto-AM57x/BSP-Yocto-AM57x-PD23.1.0/images/yogurt/phycore-am57xx-1/u-boot.img]

 FAQ

FAQ

Browse knowledge base of frequently asked questions about the phyCORE-AM57x.

	Does the phyCORE-AM57x support MIPI CSI-2?

	Automatic Power-On Event at Power Up?

 Does the phyCORE-AM57x support MIPI CSI-2?

Does the phyCORE-AM57x support MIPI CSI-2?

No. Unfortunately, the PCM-057 design does not bring out the signals to the SOM connectors to support MIPI CSI-2. The TI AM571x supports 2x MIPI CSI-2 for a camera option (the TI AM572x supports 3x parallel camera / VIN). The phyCORE-AM57x SOM was designed around the AM5728 which does not have a MIPI CSI-2 interface. Therefore, support and signal availability is centered around the parallel camera interface.

[image: AM571x Block Diagram]
[image: AM572x Block Diagram]
The following table shows the signals available at the connector (highlighted in yellow) from the MIPI CSI-2 on the AM571x variant of the SOM:

Processor Ball to SOM Connector Pin Mappings

	AM571x Signal Name

	Processor Ball Number

	Net Name (Schematic)

	SOM Connector Pin

	csi2_0_dx0

	AE1

	
	

	csi2_0_dx1

	AF1

	
	

	csi2_0_dx2

	AF2

	
	

	csi2_0_dx3

	AH4

	
	

	csi2_0_dx4

	AH3

	
	

	csi2_0_dy0

	AD2

	X_VIN3A_D6

	X1-A67

	csi2_0_dy1

	AE2

	X_VIN3A_D4

	X1-A65

	csi2_0_dy2

	AF3

	
	

	csi2_0_dy3

	AG4

	X_KBD_ROW2

	X1-A32

	csi2_0_dy4

	AG3

	
	

	csi2_1_dx0

	AG5

	
	

	csi2_1_dx1

	AG6

	
	

	csi2_1_dx2

	AH7

	X_VIN3A_CLK0

	X1-A75

	csi2_1_dy0

	AH5

	
	

	csi2_1_dy1

	AH6

	
	

	csi2_1_dy2

	AG7

	
	

 Automatic Power-On Event at Power Up?

Automatic Power-On Event at Power Up?

This application note describes the reference circuit used to trigger the automatic power-on event at power up of the phyCORE-AM57x development kit. This solution is appropriate for any custom applications that cannot support a manual power button and is implemented on the development kit carrier board by default.

Recommended Circuit Implementation

The schematic of the recommended circuit solution is shown in Figure 1. The design has been simulated via LTspice, as well as physically built and tested. The measured X_PWRON response of the physical implementation is shown in Figure 2. Further information and results are detailed in the following sections of this Application Note.

[image: Automatic Power-On Reference Circuit]
Figure 1: Recommended Automatic Power-On Reference Circuit

[image: X_PWRON Response using the Recommended Circuit Design]
Figure 2: X_PWRON Response using the Recommended Circuit Design

The table below lists the recommended components to use in the implementation of this design. The reference designators used are based on the schematic shown in Figure 1.

Recommended Automatic Power-On Components

	Reference Designator

	Recommended Part Number

	Description

	R1

	
	10kΩ

	R2

	
	10kΩ

	R3

	
	143kΩ

	C1

	
	1uF

	C2

	
	100nF

	C3

	
	100nF

	D1

	LL42-GS08

	Small Signal Schottky Diode (Vishay Semiconductors)

	D2

	LL42-GS08

	Small Signal Schottky Diode (Vishay Semiconductors)

	A1

	SN74LVC1G17DCK

	Single Schmitt-Trigger Buffer (Texas Instruments)

	M1

	2N7002

	N-Channel MOSFET (NXP Technologies)

Note

Although these particular parts are recommended, they can be replaced as necessary based on limitations of cost, space, etc… When replacing these components, take care in the selection of the passive values as the response timing may change. The X_PWRON delay can be adjusted as described in the following sections of this application note. A package size of 0805 is recommended for the passive components for easier hand rework when replacing these parts.

Actual values of these passive components may require tuning for specific use cases.

Note that earlier versions of the AM57x SOM (PCM-057.A5 and earlier) populate C251 with a 1uF capacitor, which is connected between X_PWRON and ground. This capacitor will introduce further delay on the X_PWRON rise/fall time, potentially causing the board not to respond or boot as expected. The design was updated to populate C251 with a smaller 0.1uF capacitor, which results in an X_PWRON response similar to Figure 2. Consider this capacitor value when implementing this design with an older version of the SOM

Troubleshooting

Please refer to the following timing diagram. Each window of time labeled 1, 2, 3, etc… will be referred to as T1, T2, T3, etc… respectively.

[image: Timing Diagram]

Issue #1 - Booting is inconsistent, unreliable, or not working at all.

This may be a result of X_PWRON being toggled low too soon before VCC_3V3 is on and stable. For reliable booting, ensure that T3 is at least ~5.5ms to allow the device to arrive at the ‘OFF’ state from the ‘NO SUPPLY’ state (further details available in this application note). Increase the R3 and C2 values to increase the delay time before X_PWRON is toggled low.

Issue #2 - Board begins to boot, but then shuts off after a few seconds.

This may be a result of X_PWRON being toggled low for too long, triggering a ‘long press’ at the PMIC (typically a few seconds). When a long press is detected the PMIC will transition the system to the OFF state. The X_PWRON low time, T4, can be adjusted by decreasing the values of R2 and C3.

Circuit Design

This circuit will be powered by the main 3.3V rail (labeled VCC_3V3_IN on the AM57x SOM). The circuit consists of an RC delay stage, a Schmitt trigger stage, and an RC + FET circuit to generate the X_PWRON pulse.
The RC delay provides control over the X_PWRON delay. R3 and C2 can be tuned to ensure that the VCC_3V3 rail is powered and stable long enough before toggling X_PWRON. The D1 diode is included to discharge C2 quickly after VCC_3V3 is powered off. This ensures that C2 will be discharged even in the event of a quick power cycle, keeping the RC delay consistent between power cycles. Without this diode C2 may only discharge slightly before power is reapplied, which could cause a shorter delay (or even no delay at all).

The Schmitt trigger stage is intended to prevent noise on the VCC_3V3 rail from triggering the X_PWRON transition. If the input to the Schmitt trigger is ‘bouncing’ around or noisy, it will filter this out and only transition X_PWRON when a significant change in the input occurs.

The third stage is implemented to generate the X_PWRON pulse low at the rising edge of the Schmitt trigger output. By gating the M1 NMOS with this RC combination, the X_PWRON will toggle low then high only once (rather than remaining low after toggling). D2 is used to clamp the negative voltage caused by the falling edge of the Schmitt trigger output. During quick power cycles this could prevent the C1 capacitor from charging up to a level that will properly bias the M1 FET. Therefore D2 is recommended for consistent behavior during quick power cycles. An additional RC delay is added before the gate of the NMOS to slow down the switching time of the FET. This timing can be adjusted to prevent overshoot and other undesired behavior caused by the fast transitions at the gate of the FET.

LTspice Simulation

Figure 3 below shows how the circuit was simulated in LTspice. The 3.3V supply was driven by a pulse source to simulate a quick power cycle. A number of waveforms were captured to test the general behavior and response of the design and to verify its stability. The processor and PMIC datasheets do not seem to provide a specific amount of time that the 3.3V rail should be powered up before toggling X_PWRON. However, these timings can be adjusted by the passive components as described in the Schematic Design section if issues arise during testing and validation.

The rise time was simulated as 4ms based on the AM57x carrier board 3.3V switching regulator design. A load of 100uF and 3.3 ohms was also added to simulate the load on the 3.3V rail. All of these values may change based on the target design/load, so the passive component values may need to be adjusted to optimize the circuit response.

[image: Simulation Circuit Example]
Figure 3: Simulation Circuit Example

Note

R4 is included to represent the 10k pull-up resistor on the AM57x SOM, which is actually labeled as R158. If R158 is populated, an additional pull-up resistor should NOT be added.

[image: VCC_3V3 vs. X_PWRON]
Figure 4: VCC_3V3 vs. X_PWRON

Figure 5 and 6 show the response of the RC delay with and without the D1 diode. Implementing D1 allows the C2 capacitor to discharge faster when 3V3 is powered off. When power is re-applied quickly, the RC delay circuit will then maintain a delay much closer to its expected delay value as C2 will not be starting partially charged. Note that even with D1 it is possible that C2 does not completely discharge when 3.3V power is applied immediately (though discharging is still improved).

[image: RC Delay Quick Power Cycle without D1]
Figure 5: RC Delay Quick Power Cycle without D1

[image: RC Delay Quick Power Cycle with D1]
Figure 6: RC Delay Quick Power Cycle with D1

Figure 7 and 8 show the response of the FET gate input with and without the D2 diode. The R1 and C1 circuit is intended to trigger on the rising edge of the 3.3V rail, however on the falling edge it will drive a negative voltage at its output. This undesired response can be reduced by clamping the output with D2. Without D2 (during a fast power cycle) the negative voltage will cause the signal to rise to its positive level much slower as the C1 charge reverses. If the power cycle is fast enough this can prevent the M1 FET from being properly biased, and therefore not trigger X_PWRON as expected.

[image: R1/C1 Output without D2]
Figure 7: R1/C1 Output without D2

[image: R1/C1 Output with D2]
Figure 8: R1/C1 Output with D2

Figure 9 and 10 show the response of X_PWRON with and without an additional RC delay at the FET’s gate input. Without this RC delay it seems the switching of the M1 NMOS is too fast, which is causing spikes on X_PWRON during the edge transitions of the gate input. By adding a small RC delay, the switching time can be slowed down so that X_PWRON does not experience these signal spikes.

[image: R1/C1 Output without RC delay]
Figure 9: R1/C1 Output without RC delay

[image: R1/C1 Output with RC delay]
Figure 10: R1/C1 Output with RC delay

Figure 11 shows the response of X_PWRON when the power is cycled during the low pulse of X_PWRON.The circuit behaves properly except for a small spike after the first falling edge of X_PWRON. This is likely due to the 3.3V rail being powered off quickly, which causes the FET to ‘switch off’ sooner. This then causes X_PWRON to follow VCC_3V3 (via the pull-up), which is still discharging towards 0V. This should not be an issue, but if this behavior is not desired the R2/C3 delay can be adjusted so that the transition at the M1 gate is slower. For example, Figure 12 shows the response when R2 is replaced with a 30k ohm resistor (this X_PWRON spike is no longer present).

Increasing the R2/C3 delay will increase the rise and fall times of the M1 gate waveform. Therefore it will take longer to reach the proper M1 biasing voltage, which will reduce the time X_PWRON is pulsed low. If this rise time is too long, then the gating signal will begin to fall to 0V again before switching the M1 FET on. This will prevent X_PWRON from toggling low at all. Take care in selecting the values of the passive components and the M1 NMOS.

[image: VCC_3V3 Power Cut Behavior During X_PWRON Low Pulse]
Figure 11: VCC_3V3 Power Cut Behavior During X_PWRON Low Pulse

[image: VCC_3V3 Power Cut Behavior During X_PWRON Low Pulse with R2 = 30k]
Figure 12: VCC_3V3 Power Cut Behavior During X_PWRON Low Pulse with R2 = 30k

Physical Circuit Testing

This circuit was implemented on a PHYTEC GPIO Expansion Board to test the actual behavior of the design.

The following two figures show the response of X_PWRON at power up. This output is NOT yet connected to the X_PWRON signal on the AM5 kit to first verify the design functionality.

[image: X_PWRON Response Isolated from AM5]
Figure 13: X_PWRON Response Isolated from AM5

[image: X_PWRON Response Isolated from AM5 Zoomed]
Figure 14: X_PWRON Response Isolated from AM5 Zoomed

After verifying the circuit produces the correct X_PWRON response, this output was connected to the X_PWRON signal on the AM5 kit. With the circuit driving X_PWRON and the current timings, the board does not boot consistently. It seems the time between VCC_3V3 stabilizing and X_PWRON toggling low is not long enough. This was adjusted by replacing R3 with a 55k resistor (rather than a 10k), and resulted in consistent booting. The new timing is shown in the following figures.

[image: X_PWRON Low Delay with R3=55k]
Figure 15: X_PWRON Low Delay with R3=55k

[image: X_PWRON Toggle Delay after VCC_3V3]
Figure 16: X_PWRON Toggle Delay after VCC_3V3

These passive values may need to be adjusted further to optimize the timing and behavior.

[image: FET Gate Input Response to Quick Poweroff]
Figure 17: FET Gate Input Response to Quick Poweroff

[image: X_PWRON vs R1/C1 Response]
Figure 18: X_PWRON vs R1/C1 Response

A quick power cycle was implemented to analyze the behavior of the circuit under this condition. As shown in Figure 18, the response of the R1/C1 stage has a small positive spike before its typical rise response. To debug the root cause of this, the Schmitt trigger stage was further analyzed during a quick power cycle. Figure 20 shows the Schmitt trigger response at initial power up after the board has remained off for some time. However, when power is then quickly cycled after being powered up, the Schmitt trigger output has a small, positive spike as shown in Figure 21. This is likely due to the slower fall time of the VCC_3V3 rail at power off. Looking into the SN74LVC1G17 Schmiit Trigger datasheet it was found that the minimum recommended operating voltage is 1.65V. As shown in Figure 20, once VCC_3V3 approximately reaches this 1.65V, the Schmitt output is driven low and then responds as expected. Since the VCC_3V3 rail has not fallen to 0V at this point, there is some voltage remaining at the Schmitt input. It seems that with a non-zero voltage at the input while operating under 1.65V, the Schmitt trigger is in an undefined state and could have a much smaller or unpredictable positive-going input threshold voltage.

[image: X_PWRON vs R1/C1 Response During Quick Power Cycle]
Figure 19: X_PWRON vs R1/C1 Response During Quick Power Cycle

[image: Schmitt Trigger Response to Initial Power Up]
Figure 20: Schmitt Trigger Response to Initial Power Up

[image: Schmitt Trigger Response to Quick Power Cycle]
Figure 21: Schmitt Trigger Response to Quick Power Cycle

The quick power cycle case does not seem to impact the intended response of the circuit however. As shown in Figure 22, the R2/C3 delay prevents this spike from rising to a level to bias the FET and drive X_PWRON low too early. So these passive values could be adjusted if necessary. However, if this is undesired, it may be resolved by implementing a method for draining VCC_3V3 faster.

[image: FET Input Response to Quick Power Cycle Spike]
Figure 22 : FET Input Response to Quick Power Cycle Spike

After further research through the PMIC datasheet, the following information was found regarding the definition of the ‘OFF’ state:

“The device is powered by a valid supply on the system power rail (VCC1 > VSYS_LO) and it is waiting for a start-up event or condition. All device resources are in the OFF state. The approximate time for device to arrive to the OFF state from the NO SUPPLY state, without considering the rise time of VSYS and the settling time of the VSYS_LO comparator, is approximately 5.5ms.”

X_PWRON should at least be delayed long enough for the device to arrive in the OFF state, so a power-up event is recognized properly. With R3 = 55k, the current delay is measured around ~4 ms using real components. It is recommended that R3 be increased even further to provide a safer delay margin. Replacing R3 with a 143k resistor, the delay was measured as ~10 ms. It is recommended to use a 143k resistor for R3.

 Index

Index

_images/pb-057948_sd-media-linux-drives.png
Activities

*
CE
A
@

_images/pb-057948_sd-media-linux.png
H

-

MLO

i System Volume Information

wboot.img

uboot.env

PlainText ¥ Tab wid|

Ln1,Col1 >~ NS

_images/pb-057948_sata-harddrive.jpg

_images/pb-057948_sata.png
@Pulse @Pulse
HSOOTNL -~ HSOO7NL
c o

5
8
g
[=]
&
<
2]

SATA Power X12

_images/pb-057948_sd-media-windows.png
= B s boot®)

o e e
. e

DCIIWM

Finto Quick Copy Paste -
(5] Paste shortt

Clipboard
M = > boot (E)

= n-hw (\romulus phytec.de) (N)
= share (\fileserver2.phytec) (P
% temp (\hatschi.phytec.de) (T)

— boot (E)

= USB Drive (F)

4items 1 item selected 13 bytes

) sdcardtet - Notepad
Fie Edit Format View Help
SD card Test

Ln1,Col 1 100% Unix (LF)

UTF-8

Date modified
4/6/2011 1200 AM
f2011 1200 AM

Type

File
Text Document
ENV File

Disc Image File

vo

Size

Search boot (E)

144K8

1%
256K8
651K8

»

_images/pb-057948_spi-loopback.jpg
1000000000000

A

0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

e Al

0-0-O#-$-0-0-0-0-0-0-0-0-0-0-00

-y

O 0-00-000-00-0-0-0-0.-00.0-0-1 »

_images/3V3_vs_PWRON.jpg
3.3v-

V(3v3)

V(x_pwron)

T
10ms

T
20ms

T
30ms

T
40ms

T
50ms

T
60ms

T T T T T T
70ms 80ms 90ms 100ms 110ms 120ms

_images/AM5-blink.png
¥ 3300
X_MMC3_DATO

_images/2019-12-20_15-37-40.png

_images/2019-12-20_15-38-08.png
e Thu Dec 19, 12:38 AM

_images/AM571-block.png
MPU IVA HD Display Subsystem

(1x Arm 1080p Video 1x GFX Pipeline LD
Cortex-A15) Co-Processor T

LCD3
Blend / Scale HDMI1.4a

3x Video Pipeline

GPU BB2D
(1x SGX544 3D) (GC320 2D)

DSP 1PU1
Dual Cortex-M4
{1x C66x (Dualicortexsh4)
Co-Processor) IPU2

(Dual Cortex-M4)
.

igh-Speed Interconnect

System Connectivity

Spiniock][Timers x16 || PWM $5 x3 USE30 PCle S8 x2
Mailbox x13] [WoT HDQ e | PRUICCS 22

GPIO x8 RTC S8 KBD usB20
Dual Role FSHS
wi PHY

GMAC_SW

Serial Interfaces Program/Data Storage

UART x10 QsPI

MMC / 8D x4 SATA DMM

McSPI x4 McASP x8

512.KB GPMC/ELM EMIF
OCMC_RAM 1x 32-bit
DCAN x2 12C x5 wi ECC O DDR3(L)

"
ents Incorporated

_images/AM572-block.png
AM572x
MPU IVAHD Display Subsystem
(2x Arm 1080p Video 1% GFX Pipeline

Cortex-A15) Co-Processor

3x Video Pipeline
(BT

GPU BB2D Blend / Scale

(2x SGX544 3D)

(GC320 2D)

DSP 1PU1
(2x Co6x (Dual Cortex-M4)
Co-Processor) IPU2
(Dual Cortex-M4)

igh-Speed Interconnect

System Connectivity

[Spinlock][Timers x16 | [PWM SS x3 USB30 PCle SS x2
Dual Role FSHSISS
HDQ wPHYs PRU-ICSS x2

GPIox8 |[RTcss [kBD USB
Dual Role FSHS. GMAC_SW
wiPHY

Serial Interfaces Program/Data Storage

MMC / SD x4 SATA

i
Incorporated

_images/pb-057948_pwrled-close-up.png

_images/pb-057948_pwrled.png

_images/pb-057948_pcie.png

_images/pb-057948_power-reset-btns.png
ResetBtn

Power Btn

_images/AM5_GPIO.png

nav.xhtml

 Table of Contents

 		
 phyCORE-AM57x

 		
 Release Notes

 		
 New in this Release

 		
 Software Versioning

 		
 PHYTEC Meta Layer

 		
 Part Number Summary

 		
 Compatible Modules and Accessories

 		
 Linux Device Tree Summary

 		
 Supported Interfaces

 		
 Quickstart

 		
 Basic Evaluation Requirements

 		
 Check the Board Configuration

 		
 SD Boot Settings

 		
 Serial Communication Setup

 		
 Windows 10 Instructions

 		
 Linux Instructions

 		
 Power the Board

 		
 Safe Shutdown

 		
 Interface Guides

 		
 Audio

 		
 Requirements

 		
 Hardware Setup

 		
 Playing Audio

 		
 Capturing Sound

 		
 Audio Mixer Settings

 		
 Bluetooth

 		
 Requirements

 		
 Hardware Setup

 		
 Enable the Bootloader Overlay

 		
 Initializing BT

 		
 Camera

 		
 Requirements

 		
 Hardware Setup

 		
 Taking a Video

 		
 Taking a Picture

 		
 CAN

 		
 Requirements

 		
 Setup the CAN Network

 		
 Setup CAN Software

 		
 Send CAN messages

 		
 Receive CAN messages

 		
 Display

 		
 Requirements

 		
 Connecting the Display

 		
 Loading the Display

 		
 Framebuffer Test

 		
 Controlling the Backlight

 		
 EEPROM

 		
 Backup the Original EEPROM Contents

 		
 Verify the EEPROM is detected

 		
 Write to the EEPROM

 		
 Read from the EEPROM

 		
 Erase the EEPROM

 		
 Restore the Original EEPROM Contents

 		
 Lose the Original Contents Of the EEPROM?

 		
 eMMC

 		
 Viewing Available eMMC Partition Information

 		
 Setup a Root Filesystem on the eMMC

 		
 Mounting the eMMC

 		
 Writing to the eMMC

 		
 Reading from the eMMC

 		
 Ethernet

 		
 Requirements

 		
 Ethernet Connection

 		
 Finding the IPv4 address

 		
 Changing Static IPv4 Address to DHCP

 		
 SSH into the phyCORE-AM57x

 		
 Expansion Connector

 		
 Fan

 		
 GPIO

 		
 Using LEDs and Push Buttons

 		
 Advanced Steps to Impress your Mom!

 		
 GPIO Signal Naming

 		
 HDMI

 		
 Requirements

 		
 Setting Up HDMI

 		
 Default Test Image

 		
 Reverting Back to Original Settings

 		
 I2C

 		
 Requirements

 		
 Using I2C1

 		
 Interacting with I2C1

 		
 Connecting the Accelerometer

 		
 Sensor Script

 		
 JTAG

 		
 Requirements

 		
 Hardware Setup

 		
 Host Setup

 		
 PCIe

 		
 Requirements

 		
 Hardware Setup

 		
 Verifying PCIe

 		
 Setting up Ethernet

 		
 Testing PCIe

 		
 Power and Reset Buttons

 		
 Power LEDs

 		
 QSPI NOR Flash

 		
 Setup and Partition Information

 		
 Write to QSPI

 		
 Read from QSPI

 		
 Reverting back to the Original Device Tree

 		
 RTC

 		
 Accessing RTC

 		
 Setting the Time

 		
 Verifying RTC

 		
 SATA

 		
 Requirements

 		
 Hardware Setup

 		
 Testing SATA

 		
 SD Card

 		
 Requirements

 		
 Transfering Media on Target

 		
 Transfering Media from Host

 		
 Increasing the Root Filesystem

 		
 SPI

 		
 Requirements

 		
 Development Kit Setup

 		
 Enabling Overlay & Script

 		
 Loop-back Test

 		
 Thermal Zones

 		
 Reading the Temperature

 		
 Temperature Trip Points

 		
 UART

 		
 Requirements

 		
 Hardware Setup

 		
 UART5 Terminal Setup

 		
 UART5 Setting the Baud Rate

 		
 Sending a Message to UART5

 		
 Receiving a Message from UART5

 		
 USB

 		
 Requirements

 		
 Verifying USB Interface

 		
 Mounting USB Stroage Devices

 		
 Write to the USB Host Device

 		
 Read from the USB Host Device

 		
 Unmounting the Drive

 		
 USB WebCam

 		
 Requirements

 		
 Connecting the Display

 		
 Loading the Display

 		
 Verifying Default Settings

 		
 Video on Display

 		
 Getting Fancy!

 		
 WiFi

 		
 Requirements

 		
 Hardware Setup

 		
 Enable the Bootloader Overlay

 		
 Configure WiFi Credentials

 		
 Establish A Connection

 		
 Enabling the Firmware and Building the BSP (Yocto)

 		
 Booting Essentials

 		
 SD Card

 		
 Create a Bootable SD Card

 		
 Requirements

 		
 Flashing SD Card with Pre-Built Binaries

 		
 Updating Individual Parts (Advanced, Linux Machine)

 		
 Booting from SD Card

 		
 eMMC

 		
 Flashing the eMMC

 		
 Requirements

 		
 Preparing to Flash eMMC (Software)

 		
 Preparing to Flash eMMC (Hardware)

 		
 Starting with a Clean eMMC

 		
 Flash the eMMC

 		
 Booting from eMMC

 		
 NAND

 		
 Requirements

 		
 Verify NAND

 		
 Software Setup

 		
 Flashing NAND

 		
 Booting from NAND

 		
 Copying Files to the Device

 		
 Using a Network

 		
 Using Removable Storage Devices

 		
 Configuring the Bootloader

 		
 Change the Device Tree

 		
 Working with Overlays

 		
 Reset the U-Boot Environment to Default Settings

 		
 Using the PHYTEC EEPROM Flashtool

 		
 Does my EEPROM need to be flashed?

 		
 Using the Flashtool

 		
 Read the SOM Configuration

 		
 Write the SOM Configuration

 		
 Display Data

 		
 Advanced Usage

 		
 Boot Modes

 		
 Application Development

 		
 Install The SDK

 		
 Requirements

 		
 Download the Pre-Built SDK Installer or Build it Yourself

 		
 Source the Cross-Compilation Environment

 		
 Hello World

 		
 Native Compilation (On the Target)

 		
 Cross-Compilation (On a Linux Host Machine)

 		
 Blink

 		
 Create the Blink Program

 		
 Mux the Processor Pin

 		
 Run the Blink Program

 		
 Building the BSP

 		
 Build the BSP

 		
 Requirements

 		
 Host Setup

 		
 Yocto Build Steps

 		
 Start the Build

 		
 Components of a Built BSP

 		
 Building the SDK Installer

 		
 Modify The BSP

 		
 Adding Packages to the BSP

 		
 Modify the Kernel Config

 		
 Modify the BSPâ��s Kernel Source Directly

 		
 Modifying the BSP Sources With â��devtoolâ��

 		
 Create a Custom Meta-Layer

 		
 bitbake-layers Tool

 		
 Check Existing Layers

 		
 Create a Layer

 		
 Add Layers

 		
 Extend a Recipe

 		
 Standalone Kernel Development

 		
 Requirements

 		
 Clone the Linux kernel

 		
 Make

 		
 Pre-Built Binaries

 		
 FAQ

 		
 Does the phyCORE-AM57x support MIPI CSI-2?

 		
 Automatic Power-On Event at Power Up?

 		
 Recommended Circuit Implementation

 		
 Troubleshooting

 		
 Circuit Design

 		
 LTspice Simulation

 		
 Physical Circuit Testing

_images/R1C1_vs_FET_GATE_55k_quick_poweroff.png
—

Honicz) 2238
v 2235

22 M223
o080 m 10

XY e 10V Bw MZ00ms IDOMSE T0onskr
A Chi 20mi

_images/R1C1_vs_PWRON_55k.png
XY oz 107 140ms 25 0MS/s 40.0nspt
A Ch1 a00my

_images/Circuit_Schematic.jpg
VCC_3V3

DS
-
R3 A 1 R2 — M
' 5 [: . 2N7002
Uk g < WF Rt D2 10k o
[100nF [[100nF
7 S e

X_PWRON >

_images/Picture1.png

_images/SCHMITT_quick_poweroff.png
voo_avs

SCHUITT_I

L L L L L

o

200p
goms
43ms
Ty
120
1567
2600m7
0.7

T

354 99999
I 355.0m M 355.0n

lo: 00

n 10

_images/SCHMITT_quick_poweroff_fet_gate.png
[soHMITT_out

FET_GATE

o1 1ov oz 107 M20ms SOONSs 20.0nspt
o3 1oV ohz 13

_images/R1C1_vs_PWRON_55k_quick_poweroff.png
[x_priRon

XY oz 107 140ms 25 0MS/s 40.0nspt
A Ch1 a00my

_images/SCHMITT.png
vee_wv3

£ servairr_aur)

SCHUITT_I

ont
ohs

1ov o
1ov

1ov

12.0me S0.0MS#s
ohz 13

200nsht

-472ms
S 2ams
Sams

1004t

n 10

_images/Simulation_Circuit.jpg
3v3

V3

PULSE(0 3.3 10m 4m 4m 25m 28m 2)

.tran 0 100m 0 1m startup

A1

c1 R2

10k

c2
[100nF

G

1pF R1 D2 10k

c3
[100nF

R4
10k

m1
| 2N7002

N7

c4 R5

To0uc 3.3R

iX_PWRON

Simulated Load Capacitance and Resistance

_images/With_D1.jpg
V(3v3)

V(r3¢2_output)

3.6V-

3.0V~

2.V

2.4V~

20+

LaV

1.2V~

0.9vV—-

0.6V~

0.3V~

0.3V-
7ms

T
14ms

T
21ms

T
28ms

T
35ms

T
42ms

T
49ms

T
56ms

T
63ms

T
70ms

T
77ms

84ms|

_images/With_D2.jpg
3.3v-

viev3)

3.0V~

2.V

2.4V~

2.1V~

1.8V~

TiBM

1.2V~

0.9vV—-

0.6V—-

0.3V

0.0V-
3.6V-

V(ric1_output) V(x_pwron)

3.2V
2.8V
2.4V~
2.0V
1.6V~
1.2V~
0.8V~
0.4V~

0.0V-
0.4V~

0.8V~

1.2v. T T T T T T T T T
oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms}

_images/Without_D1.jpg
V(3v3)

V(r3¢2_output)

3.6V-

3.0V~

2.V

2.4V~

20+

LaV

1.2V~

0.9vV—-

0.6V~

0.3V~

0.3V-
7ms

T
14ms

T
21ms

T
28ms

T
35ms

T
42ms

T
49ms

T
56ms

T
63ms

T
70ms

T
77ms

84ms|

_images/Without_D2.jpg
3.3v-

viev3)

3.0V~

2.V

2.4V~

2.1V~

1.8V~

TiBM

1.2V~

0.9vV—-

0.6V—-

0.3V

0.0V-
3.6V-

V(ric1_output) V(x_pwron)

3.0V~
2.4V
1.8V~
T2¥=
0.6V~

0.0V-
0.6V~
1.2V~
1.8V~
2.4V~

3.0V~

36V T T T T T T T T T
oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms}

_images/With_D2_and_rc_delay.jpg
3.3v-

3.0V~

2.V

2.4V~

2.1V~

1.8V~

TiBM

1.2V~

0.9vV—-

0.6V—-

0.3V

viev3)

0.0V-

3.6V-

3.2y

2.8V

2.4V~

1.6V~

T2¥=

0.8V—-

0.4V~

V(x_pwron) ‘ ‘ ‘ ‘ ‘ V(m1_gate)

0.0V-

0.4V-
0ms

T T T T T T T T T
10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms

100ms}

_images/With_D2_and_without_rc_delay.jpg
3.3v-

3.0V~

2.V

2.4V~

2.1V~

1.8V~

TiBM

1.2V~

0.9vV—-

0.6V—-

0.3V

0.0V-

viev3)

4.5V-

4.0V~

J5V=

3.0V

2.0V~

1.5V

1.0V~

0.5V

V(x_pwron) ‘ ‘ ‘ ‘ ‘ V(m1_gate)

0.0V-

0.5V~

1.0V
0ms

T T T T T T T T T
10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms

100ms}

_images/X_PWRON_via_VCC_3v3_55k_2.png
X PWRON
L

XY

o

1ov

12.0ms 00N
A Chl . 820mt

10.0msht

3.76ms
a00ps
Sams
2632

_images/X_PWRON_via_VDD_3v3.png
12005
S ioms
Soms

200014

von_3va

X PARON

XY e 10V Bw o M1OmsZSONMSE 4Onsh
Bent v 18y

_images/X_PWRON_via_VCC_3v3_150k.png
vez_3v3

-10.2ms
2000ps

10.0me
1007H:

XPWRON

XY oz 107 1140ms 25 0MS/s 40.0nst
A ChT a0

_images/X_PWRON_via_VCC_3v3_55k.png
X PWRON

XY 2 10V Bw MZOms10DMSE T0onskr
A Chl . 820mt

_images/connection-diagram_can.png
Host Machine

Development kit
CcAN

PCAN-USB
cable

(o

_images/cut_power_during_pwron_low_pulse.jpg
V(3v3)

V(m1_gate)

V(x_pwron)

T
14ms

T
21ms

T
28ms

T
35ms

T
42ms

T T T T T
49ms 56ms 63ms 70ms 77ms

84ms|

_images/X_PWRON_via_VDD_3v3_2.png
von_3v3

X PWRON

XY

o

1ov

M20me 10OMSIs 10.0nsr
Boht 18y

_images/pb-057948-bootswitch_closeup.png

_images/pb-057948-quickstart-devicemanager.png
@ Device Manager

File Action View Help

e mEm e

2 DESKTOP-TTONTSR
> & Audio inputs and outputs
> 9 Batteries
> 8] Biometric devices
> © Bluetooth
> @ Camerss
5 B9 Computer
> Diskdrives
> [Display adapters
> B Firmware
> @ Human Interface Devices
> 3 Imaging devices
> & Jungo Connectivity
> = Keyboards
> £1 Memory technology devices
> (9 Mice and other pointing devices

Monitors

> @ Network adapters

> @ Portable Devices

v @ Ports (COM&LPT)

) USB Serial Port (COMS)
> R Print queues

> R Printers

> [Processors

> B Security devices

B Soffware comnonents

_images/cut_power_during_pwron_low_pulse_30k.jpg
V(m1_gate)

V(x_pwron)

T T T T T T T T T
0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms}

_images/menuconfig.jpg
.config - Linux/armé64 5.10.65 Kernel Configuration

— Linux/arm64 5.10.65 Kernel Configuration —

General setup --->

[*] Support DMA zone
[*] Support DMA32 zone
Platform selection --->
Kernel Features --->
Boot options --->
Power management options --->
CPU Power Management --->
Firmware Drivers --->
[1 ACPI (Advanced Configuration and Power Interface) Support ----
[*] virtualization --->
-*- ARM64 Accelerated Cryptographic Algorithms --->
General architecture-dependent options --->
[*] Enable loadable module support --->
[*] Enable the block layer --->
I0 Schedulers --->
Executable file formats --->
Memory Management options --->
[*] Networking support --->
Device Drivers --->
File systems --->
Security options --->
-*. Cryptographic API --->
Library routines --->
Kernel hacking --->

g3 lHe LpgriSymInfogkiHelp 2@ ShowAllg&iBackgd Savegdil oadgdisymSearchgd lExit]

_images/pb-057948_audio-jp3-jp6-jp10.png

_images/pb-057948-quickstart_bootup.png
Serial Debug

Power 12V

_images/pb-057948_audio-alsamixer.png
COM27 - Tera Term VT

File Edit Setup Control Windo

AlsaMixer vi.1.2 ~

Card: phyCORE-ANSZ0cRDK Help
Chip Systen infornation
Uiew: F3:[Playbackl F4: Capture F5: A1l Select sound card

Tten: PCH [dB gain: —28.68, —26.881 Exit

Bns 188ns -5.5dB DAC L1]

Disabled
m i 00
41041 4O HOHM MO 0> 4104 HOM MO 41041 4O HOH
~ Line Line DAC Line Lin Line PGA ADC HPF AGC Class—D De—empha HP HP DAC HP Line2 HP PGA B HPCOM HPCOM DA HPCOM Li HPCOM PG Left AGC Left AGC Left AGC Left DAC Left HP

_images/pb-057948_boot-emmc.png
ON

_images/pb-057948_boot-nand.png
ON

_images/pb-057948_audio-usb.jpg

_images/pb-057948_audio.png
X15 X14 X16 X13

_images/pb-057948_camera-jp4.png
Component Placement Diagram: Top Side, phyCORE-AMS7 Carrier Board (1435.3)

_images/pb-057948_camera-jp6.png
= T BEEEEEEE

BINEREE

EE

14

ERE
&
oy

” fuor® EEEE' 2|

S8l

imoge ¢

L
[l (2

SE=gEd -

g [©

Set jumper J6 to 2+3

_images/pb-057948_boot-sd.png
ON

_images/pb-057948_camera-connection.png

_images/pb-057948_camera.png

_images/pb-057948_wifi-bt-pcm949.png
=
=

_images/pb-057948_can-jp1-jp2.png

_images/pb-07225_quickstart-serialconfig.jpg
¥ COM4 - Tera Term VT

File Edit | Setup Control Windoy
Terminal...
Window..
Font..
Keyboard...

Serial port...

Pre
H.

SSH Authentication.
SSH Forwarding...
SSH KeyGenerator.
TCR/IP...

General.
Additional settings..

etup.

Restore setup..

Load key map...

_images/pb-057948_wifi-bt.png

_images/pb-07225_quickstart-terminal-settings.jpg
Tera Term: Serial port setup

Port: COM4 ¥ oK
|115200 v

Speed:

Data: 8 bit v Cancel
Parity: none v

Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecichar 0 mseciline

_images/pb-07225_quickstart-terminal-session.jpg
VT
File Edit Setup Control Windo
New connection.. Alt+N

in connectiol

Replay Log.

TTY Replay

Print.

Exit

Exit All

_images/pb-057948_uart-x17-pinout.png
X17 Header DB9 Cable

_images/pb-057948_uart-x17-pin1.png
UARTS (X17)
L i

_images/pb-057948_usb-j3-j6-j10.png

_images/pb-057948_uart.png
UARTS3 (X18)

UARTA0 (X26)

UARTS (X17)

UARTA0 (X28)

_images/pb-057948_usb.png
USB2 (x19)

USB2 (X9)

_images/pb-057948_usb-webcam.png

_images/pb-057948_display-connection.jpg

_images/pb-057948_display.png
LVDS (X25)

_images/pb-057948_can1.png

_images/pb-057948_display-S1-pwm.jpg

_images/pb-057948_eth-dhcp-diagram.png
Host Machine

DHCP
Server

ASwitch

phyCORE RDK
Ethernet

_images/pb-057948_expansion-board.png
Expansion Connector X28

_images/pb-057948_eth-VMsetting.jpg
Virtual Machine Settings

Hardware Options

| Device Summary
| E=IMemory 16GB
{processors 4
[\ Hard Disk (SCS) 29068
@ CD/DVD (SATA) Auto detect
2 Network Adapter NAT
USB Controler Present.
< Sound Card Auto detect
S Printer Present
[Clpisplay Auto detect
Add..

Device status
Connected

Connect at power on

nection

O Bridge
Replcate physical network connection state

& Configure Adapters

(@ NAT: Used to share the host's IP address
O Host-only: A private network shared with the host
O custom: Spediic virtual network

VMneto
O LAN segment:

LAN Segments...

red directly to the physical network

_images/pb-057948_eth-callout.png

_images/pb-057948_fan.png
+ @ Fan Connector X36

_images/pb-057948_uart-new-terminal.jpg
VT
File Edit Setup Control Windo
New connection.. Alt+N

in connectiol

Replay Log.

TTY Replay

Print.

Exit

Exit All

_images/pb-057948_uart-device-man.jpg
& Device Manager

File Action View Help

e B EHED B EX®

& DESKTOP-TTONTSR
> & Audio inputs and outputs
> B Batteries
18 Biometric devices
> © Bluetooth
> @ Cameras
> B3 Computer
Disk drves
> [Display adapters
> B Firmware
> @ Human Interface Devices
& Jungo Connectivity
> 2 Keyboards
> L3 Memory technology devices
> © Mice and other pointing devices
=1 Monitors
> @ Network adapters
v @ Ports (COM&LPT)

§ Siicon Labs Dusl CP2105 USE to UART Bridge:Enhanced COM Port (COM74)
@ Siicon Labs Dusl CP2105 USB to UART Bidge: Standsrd COM Port (COMT3)

) USB Serial Port (COMTS)
> 0 Print queues
> =0 Printers
I Processors
> Wy Security devices

B Software comnnnente

_images/pb-057948_uart-terminal-settings.jpg
Tera Term: Serial port setup

Port: COM4 ¥ oK
|115200 v

Speed:

Data: 8 bit v Cancel
Parity: none v

Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecichar 0 mseciline

_images/pb-057948_uart-serialconfig.jpg
¥ COM4 - Tera Term VT

File Edit | Setup Control Windoy
Terminal...
Window..
Font..
Keyboard...

Serial port...

Pre
H.

SSH Authentication.
SSH Forwarding...
SSH KeyGenerator.
TCR/IP...

General.
Additional settings..

etup.

Restore setup..

Load key map...

_images/pb-057948_can.png

_images/pb-057948_hdmi_fbtest_test004.jpg
“‘u’“‘b“‘b‘n
ii“‘.“ﬂ‘ e R R
a.‘.‘.u.‘.“.‘j“‘a
“i““."““A
R R B B B R e e g e g
36&‘5‘&!&&011;
066663655‘&54:

C‘lilllllb‘ila
‘5‘5““‘5“‘;
éi&‘ilhbllbéi.

59555“‘5“5‘L
SRR R L EEEEEE ST
EE R E B £ E T
EE B E B £ 8 £ e E
SR B B R R
@ @ @ @ @ @ e 9w e e e
@ W W G 9 G ¢ G 9w
SRR E L R L
EE R L P E e E
EEE E B E £
O‘i“iiiii“iL
R R T R
PEE E e E E E b

_images/pb-057948_hdmi_fbtest_test006.jpg

_images/pb-057948_hdmi_fbtest_test001.jpg

_images/pb-057948_hdmi_fbtest_test002.jpg
T
N

_images/pb-057948_i2c-accel-circuit.png
GND —o-

° 5V GND
scL spA
e N

_images/pb-057948_i2c-accel-connected.png

_images/pb-057948_hdmi_fbtest_test008.jpg

_images/pb-057948_hdmi_fbtest_test009.jpg
&&A&&AAA&A&AAAA&

ddddisaia

_images/pb-057948_gpio-pcm-957.png
25C (GPI0A_20)

———oo————

51C (L8V Rai)
—_—

_images/pb-057948_hdmi.png
Micro-HDMI X24

_images/pb-057948_jtag-setup-device.png
AMS5728.coml 32

@ Getting Started [& main.c
Basic

General Setup

This section describes the general configuration about the target.

Connection frexas Instruments XDS2xx USB Debug Probe
Board or Device fype filter text

@ AM5728
AMS5728_RevA &
AMS746
AMS5748
AMS5749
AM6526
AM6527
AM6528
AM6546
AM6548
AMIC110

Advanced Setup

Target Configuration: lists the configurati
Save Configuration

save
Test Connection
To test a connection, all changes must have
configuration file contains no errors and t
function.

| Test connection |

Alternate Communication

Uart Communication

_images/pb-057948_jtag-sucessfultest.png
Test Connection

-[Perform the Integrity scan-test on the JTAG DR]-- ‘

This test will use blocks of 64 32-bit words.
This test will be applied just once.

Do a test using OXFFFFFFFF.
Scan tests: 1, skipped: 0, failed:
Do a test using 6x00090000.

Scan tests: 2, skipped: 0, failed:
Do a test using OXFEO3EGE2.

Scan tests: 3, skipped: 0, failed: @ |
Do a test using @x1FCIFID.

Scan tests: 4, skipped: 0, failed:
Do a test using @x5533CCAA.

Scan tests: 5, skipped: 0, failed: ,
Do a test using @XAACC33SS.

Scan tests: 6, skipped: 0, failed: 6 —
AlL of the values were scanned correctly. ,

The JTAG DR Integrity scan-test has succeeded. |

[End: Texas Instruments XDS2xx USB Debug Probe 0]

_images/pb-057948_jtag-newtarget.png
& New Target Configuration

Target Configuration

Create a new Target Configuration file.

File name:

AMS57x XDS200 USB.coxml

Use shared location

Location: | Cy/Us